Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add filters

Year range
1.
Gut ; 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1622066

ABSTRACT

OBJECTIVE: Helicobacter pylori infection is mostly a family-based infectious disease. To facilitate its prevention and management, a national consensus meeting was held to review current evidence and propose strategies for population-wide and family-based H. pylori infection control and management to reduce the related disease burden. METHODS: Fifty-seven experts from 41 major universities and institutions in 20 provinces/regions of mainland China were invited to review evidence and modify statements using Delphi process and grading of recommendations assessment, development and evaluation system. The consensus level was defined as ≥80% for agreement on the proposed statements. RESULTS: Experts discussed and modified the original 23 statements on family-based H. pylori infection transmission, control and management, and reached consensus on 16 statements. The final report consists of three parts: (1) H. pylori infection and transmission among family members, (2) prevention and management of H. pylori infection in children and elderly people within households, and (3) strategies for prevention and management of H. pylori infection for family members. In addition to the 'test-and-treat' and 'screen-and-treat' strategies, this consensus also introduced a novel third 'family-based H. pylori infection control and management' strategy to prevent its intrafamilial transmission and development of related diseases. CONCLUSION: H. pylori is transmissible from person to person, and among family members. A family-based H. pylori prevention and eradication strategy would be a suitable approach to prevent its intra-familial transmission and related diseases. The notion and practice would be beneficial not only for Chinese residents but also valuable as a reference for other highly infected areas.

2.
Ann Oper Res ; : 1-28, 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1616176

ABSTRACT

This paper uses weekly data from July 01, 2011 to July 09, 2021 to examine the dynamic nonlinear connectedness between the green bonds, clean energy, and stock price around the COVID-19 outbreak in the global markets. By building a time-varying parameter vector autoregression model (TVP-VAR), the comparison analyses of pre- and during the COVID-19 sample groups verify the existence of nonlinear and dynamic correlation among the three variables. First, prior to the COVID-19 pandemic, the simultaneous impacts of clean energy on stock price increased over time. Second, the results of impulse responses at different horizons indicate that green bonds lead to a short-term increase of clean energy, and it exerts an increasingly positive impacts after the COVID-19 outbreak. The COVID-19 has weakened the negative impacts of green bonds on stock price in the medium term. Finally, through the analysis of impulse responses at different points, we find that stock prices will rise when clean energy is subjected to a positive shock, and this positive effect is stronger during economic recovery period than in the other two periods.

3.
Annals of Operations Research ; : 1-28, 2022.
Article in English | EuropePMC | ID: covidwho-1609843

ABSTRACT

This paper uses weekly data from July 01, 2011 to July 09, 2021 to examine the dynamic nonlinear connectedness between the green bonds, clean energy, and stock price around the COVID-19 outbreak in the global markets. By building a time-varying parameter vector autoregression model (TVP-VAR), the comparison analyses of pre- and during the COVID-19 sample groups verify the existence of nonlinear and dynamic correlation among the three variables. First, prior to the COVID-19 pandemic, the simultaneous impacts of clean energy on stock price increased over time. Second, the results of impulse responses at different horizons indicate that green bonds lead to a short-term increase of clean energy, and it exerts an increasingly positive impacts after the COVID-19 outbreak. The COVID-19 has weakened the negative impacts of green bonds on stock price in the medium term. Finally, through the analysis of impulse responses at different points, we find that stock prices will rise when clean energy is subjected to a positive shock, and this positive effect is stronger during economic recovery period than in the other two periods.

4.
Innovation (N Y) ; : 100181, 2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1595417

ABSTRACT

Most COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, but it remains unclear how long it can maintain and how efficiently it can prevent the reinfection of the emerging SARS-CoV-2 variants. Here, we tested the sera from 248 COVID-19 convalescents around one year post-infection in Wuhan, the earliest known epicenter. SARS-CoV-2 immunoglobulins G (IgG) were well maintained in most patients and potently neutralizes the infection of the original strain and the B.1.1.7 variant. However, varying degrees of immune escape was observed on the other tested variants in a patient-specific manner, with individuals showing remarkably broad neutralization potency. The immune escape can be largely attributed to several critical spike mutations. These results suggest that SARS-CoV-2 can elicit long-lasting immunity but escaped by the emerging variants.

5.
Clin Gastroenterol Hepatol ; 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1588134

ABSTRACT

BACKGROUND & AIMS: We aimed to assess the safety and immunogenicity of inactivated whole-virion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients with chronic liver diseases (CLD) in this study. METHODS: This was a prospective, multi-center, open-label study. Participants aged over 18 years with confirmed CLD and healthy volunteers were enrolled. All participants received 2 doses of inactivated whole-virion SARS-CoV-2 vaccines. Adverse reactions were recorded within 14 days after any dose of SARS-CoV-2 vaccine, laboratory testing results were collected after the second dose, and serum samples of enrolled subjects were collected and tested for SARS-CoV-2 neutralizing antibodies at least 14 days after the second dose. RESULTS: A total of 581 participants (437 patients with CLD and 144 healthy volunteers) were enrolled from 15 sites in China. Most adverse reactions were mild and transient, and injection site pain (n = 36; 8.2%) was the most frequently reported adverse event. Three participants had grade 3 aminopherase elevation (defined as alanine aminopherase >5 upper limits of normal) after the second dose of inactivated whole-virion SARS-CoV-2 vaccination, and only 1 of them was judged as severe adverse event potentially related to SARS-CoV-2 vaccination. The positive rates of SARS-CoV-2 neutralizing antibodies were 76.8% in the noncirrhotic CLD group, 78.9% in the compensated cirrhotic group, 76.7% in the decompensated cirrhotic group (P = .894 among CLD subgroups), and 90.3% in healthy controls (P = .008 vs CLD group). CONCLUSION: Inactivated whole-virion SARS-CoV-2 vaccines are safe in patients with CLD. Patients with CLD had lower immunologic response to SARS-CoV-2 vaccines than healthy population. The immunogenicity is similarly low in noncirrhotic CLD, compensated cirrhosis, and decompensated cirrhosis.

6.
Preprint in English | EuropePMC | ID: ppcovidwho-296302

ABSTRACT

Activity reductions in early 2020 due to the Coronavirus Disease 2019 pandemic led to unprecedented decreases in carbon dioxide (CO2) emissions. Despite their record size, the resulting atmospheric signals are smaller than and obscured by climate variability in atmospheric transport and biospheric fluxes, notably that related to the 2019-2020 Indian Ocean Dipole. Monitoring CO2 anomalies and distinguishing human and climatic causes thus remains a new frontier in Earth system science. We show, for the first time, that the impact of short-term, regional changes in fossil fuel emissions on CO2 concentrations was observable from space. Starting in February and continuing through May, column CO2 over many of the World's largest emitting regions was 0.14 to 0.62 parts per million less than expected in a pandemic-free scenario, consistent with reductions of 3 to 13 percent in annual, global emissions. Current spaceborne technologies are therefore approaching levels of accuracy and precision needed to support climate mitigation strategies with future missions expected to meet those needs.

7.
Lancet Healthy Longev ; 2(11): e690-e703, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1550176

ABSTRACT

Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 called for innovation in addressing age-related disabilities. Our study aimed to identify and validate a urinary peptidomic profile (UPP) differentiating healthy from unhealthy ageing in the general population, to test the UPP predictor in independent patient cohorts, and to search for targetable molecular pathways underlying age-related chronic diseases. Methods: In this prospective population study, we used data from participants in the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO), done in northern Belgium from 1985 to 2019, and invited participants to a follow-up examination in 2005-10. Participants were eligible if their address was within 15 km of the examination centre and if they had not withdrawn consent in any of the previous examination cycles (1985-2004). All participants (2005-10) were also invited to an additional follow-up examination in 2009-13. Participants who took part in both the 2005-10 follow-up examination and in the additional 2009-13 follow-up visit constituted the derivation dataset, which included their 2005-10 data, and the time-shifted internal validation dataset, which included their 2009-13 data. The remaining participants who only had 2005-10 data constituted the synchronous internal validation dataset. Participants were excluded from analyses if they were incapacitated, had not undergone UPP, or had either missing or outlying (three SDs greater than the mean of all consenting participants) values of body-mass index, plasma glucose, or serum creatinine. The UPP was assessed by capillary electrophoresis coupled with mass spectrometry. The multidimensional UPP signature reflecting ageing was generated from the derivation dataset and validated in the time-shifted internal validation dataset and the synchronous validation dataset. It was further validated in patients with diabetes, COVID-19, or chronic kidney disease (CKD). In FLEMENGHO, the mortality endpoints were all-cause, cardiovascular, and non-cardiovascular mortality; other endpoints were fatal or non-fatal cancer and musculoskeletal disorders. Molecular pathway exploration was done using the Reactome and Kyoto Encyclopedia of Genes and Genomes databases. Findings: 778 individuals (395 [51%] women and 383 [49%] men; aged 16·2-82·1 years; mean age 50·9 years [SD 15·8]) from the FLEMENGHO cohort had a follow-up examination between 2005 and 2010, of whom 559 participants had a further follow-up from Oct 28, 2009, to March 19, 2013, and made up the derivation (2005-10) and time-shifted internal validation (2009-13) datasets. 219 were examined once and constituted the synchronous internal validation dataset (2005-10). With correction for multiple testing and multivariable adjustment, chronological age was associated with 210 sequenced peptides mainly showing downregulation of collagen fragments. The trained model relating chronological age to UPP, derived by elastic net regression, included 54 peptides from 17 proteins. The UPP-age prediction model explained 76·3% (r=0·87) of chronological age in the derivation dataset, 54·4% (r=0·74) in the time-shifted validation dataset, and 65·3% (r=0·81) in the synchronous internal validation dataset. Compared with chronological age, the predicted UPP-age was greater in patients with diabetes (chronological age 50·8 years [SE 0·37] vs UPP-age 56·9 years [0·30]), COVID­19 (53·2 years [1·80] vs 58·5 years [1·67]), or CKD (54·6 years [0·97] vs 62·3 years [0·85]; all p<0·0001). In the FLEMENGHO cohort, independent of chronological age, UPP-age was significantly associated with various risk markers related to cardiovascular, metabolic, and renal disease, inflammation, and medication use. Over a median of 12·4 years (IQR 10·8-13·2), total mortality, cardiovascular mortality, and osteoporosis in the population was associated with UPP-age independent of chronological age, with hazard ratios per 10 year increase in UPP-age of 1·54 (95% CI 1·22-1·95) for total mortality, 1·72 (1·20-2·47) for cardiovascular mortality, and 1·40 (1·06-1·85) for osteoporosis and fractures. The most relevant molecular pathways informed by the proteins involved deregulation of collagen biology and extracellular matrix maintenance. Interpretation: The UPP signature indicative of ageing reflects fibrosis and extracellular matrix remodelling and was associated with risk factors and adverse health outcomes in the population and with accelerated ageing in patients. Innovation in addressing disability should shift focus from the ontology of diseases to shared disease mechanisms, in particular ageing-related fibrotic degeneration. Funding: European Research Council, Ministry of the Flemish Community, OMRON Healthcare.

8.
Ann Oper Res ; : 1-22, 2021 Nov 18.
Article in English | MEDLINE | ID: covidwho-1527476

ABSTRACT

With the national goal of "carbon peak by 2030 and carbon neutral by 2060 in China", studies on carbon prices of China's Emissions Trading System (ETS) pilots have shown growing interest in the related fields. Carbon price fluctuations reflect the scarcity of carbon resources, and accurate prediction can improve carbon asset management capabilities. Therefore, in order to clarify the dynamics of carbon markets and assign carbon emissions allocation rationally, we propose a hybrid feature-driven forecasting model with the framework of decomposition-reconstruction-prediction-ensemble. In this paper, the non-stationary, nonlinear and chaotic characteristics of carbon prices in China's ETS pilots have been verified, and then the prediction model is built based on the tested features. Firstly, the original carbon price series are decomposed by Variational Mode Decomposition (VMD), and then reconstructed by Sample Entropy (SE). Next, Extreme Learning Machine (ELM) optimized by Particle Swarm Optimization (PSO) is conducted to predict the subsequences. Lastly, the forecasting series of every subseries are summed to obtain the final results. The empirical results based on carbon prices of China's ETS pilots proved that the proposed model performs more efficiently than the current benchmark models. As carbon prices are expected to increase across all ETS during the post-COVID-19 recovery stage, the new prediction model will be useful for improving the guiding principles of the existing government policies including the likely introductions of Border Carbon Adjustment (BCA) in the EU and the US, and governing the large global public companies to deliver their "net zero" commitments.

10.
Talanta ; : 122989, 2021.
Article in English | ScienceDirect | ID: covidwho-1473494

ABSTRACT

Virus surveillance and discovery are crucial for virus prediction and outbreak preparedness. Virus samples are frequently bulky and complicated so that effective virus detection remain challenging. Herein, we develop an 3D electrostatic microfluidic platform to rapidly and label-free enrich viruses from bulky samples at low concentrations. The platform consists of double microchannels for streamlining large volume processing and electrodes for enriching viruses by electrostatic interaction. The trajectories of simulation show that particle is successfully enriched under different forces of electrostatic field and different sample flow rates. We demonstrate that the electrostatic microfluidic platform can increase the limit of detection in 100-fold higher based on real-time PCR quantified analysis. Our design thus provides a simple, rapid, label-free and high-throughput viruses concentration platform and would thus have significant utility for various viral detection.

11.
Eur J Clin Microbiol Infect Dis ; 40(12): 2669-2676, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1460345

ABSTRACT

The humoral and cellular immunity of convalescent COVID-19 patients is involved in pathogenesis and vaccine immunity. In this study, through CoV-psV neutralization assay and IFN-γ ELISpot testing in 30 cases of COVID-19 patients after 9 months post-SARS-CoV-2 infection, it found that the ratio of memory/naive CD4+ T lymphocytes cells and levels of anti-SARS-CoV-2-IgM and RBD-IgM were slightly but significantly higher in COVID-19 severe convalescent patients than that in non-severe patients. The specific cellular and humoral immunity against SARS-CoV-2 were detectable, regardless of the severity of the disease in the acute phase. This information may help understanding the immune status after SARS-CoV-2 infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , COVID-19/blood , Enzyme-Linked Immunospot Assay , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin M/blood , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology
12.
Front Pharmacol ; 12: 731847, 2021.
Article in English | MEDLINE | ID: covidwho-1450832

ABSTRACT

COVID-19 pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has ravaged the world, resulting in an alarming number of infections and deaths, and the number continues to increase. The pathogenesis caused by the novel coronavirus was found to be a disruption of the pro-inflammatory/anti-inflammatory response. Due to the lack of effective treatments, different strategies and treatment methods are still being researched, with the use of vaccines to make the body immune becoming the most effective means of prevention. Antiviral drugs and respiratory support are often used clinically as needed, but are not yet sufficient to alleviate the cytokine storm (CS) and systemic inflammatory response syndrome. How to neutralize the cytokine storm and inhibit excessive immune cell activation becomes the key to treating neocoronavirus pneumonia. Immunotherapy through the application of hormones and monoclonal antibodies can alleviate the immune imbalance, but the clinical effectiveness and side effects remain controversial. This article reviews the pathogenesis of neocoronavirus pneumonia and discusses the immunomodulatory therapies currently applied to COVID-19. We aim to give some conceptual thought to the prevention and immunotherapy of neocoronavirus pneumonia.

13.
Pediatr Pulmonol ; 57(1): 49-56, 2022 01.
Article in English | MEDLINE | ID: covidwho-1437078

ABSTRACT

OBJECTIVE: Few studies have explored the clinical features in children infected with SARS-CoV-2 and other common respiratory viruses, including respiratory syncytial virus (RSV), Influenza virus (IV), and adenovirus (ADV). Herein, we reported the clinical characteristics and cytokine profiling in children with COVID-19 or other acute respiratory tract infections (ARTI). METHODS: We enrolled 20 hospitalized children confirmed as COVID-19 positive, 58 patients with ARTI, and 20 age and sex-matched healthy children. The clinical information and blood test results were collected. A total of 27 cytokines and chemokines were measured and analyzed. RESULTS: The median age in the COVID-19 positive group was 14.5 years, which was higher than that of the ARTI groups. Around one-third of patients in the COVID-19 group experienced moderate fever, with a peak temperature of 38.27°C. None of the patients displayed wheezing or dyspnea. In addition, patients in the COVID-19 group had lower white blood cells, platelet counts as well as a neutrophil-lymphocyte ratio. Lower serum concentrations of 14 out of 27 cytokines were observed in the COVID-19 group than in healthy individuals. Seven cytokines (IL-1Ra, IL-1ß, IL-9, IL-10, TNF-α, MIP-1α, and VEGF) changed serum concentration in COVID-19 compared with other ARTI groups. CONCLUSION: Patients with COVID-19 were older and showed milder symptoms and a favorable prognosis than ARTI caused by RSV, IV, and ADV. There was a low grade or constrained innate immune reaction in children with mild COVID-19.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Adolescent , China/epidemiology , Humans , Infant , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Tract Infections/diagnosis , SARS-CoV-2
14.
Aging (Albany NY) ; 13(17): 20896-20905, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1399703

ABSTRACT

BACKGROUND: This study aimed to explore the significance of neutrophil-to-lymphocyte ratio (NLR), lactate dehydrogenase (LDH), D-dimer, and CT score in evaluating the severity and prognosis of coronavirus disease 2019 (COVID-19). METHODS: Patients with laboratory-confirmed COVID-19 were retrospectively enrolled. The baseline data, laboratory findings, chest computed tomography (CT) results evaluated by CT score on admission, and clinical outcomes were collected and compared. Logistic regression was used to assess the independent relationship between the baseline level of the four indicators (NLR, LDH, D-dimer, and CT score) and the severity of COVID-19. RESULTS: Among the 432 patients, 125 (28.94%) and 307 (71.06%) were placed in the severe and non-severe groups, respectively. As per the multivariate logistic regression, high levels of NLR and LDH were independent predictors of severe COVID-19 (OR=2.163; 95% CI=1.162-4.026; p=0.015 for NLR>3.82; OR=2.298; 95% CI=1.327-3.979; p=0.003 for LDH>246 U/L). Combined NLR>3.82 and LDH>246 U/L increased the sensitivity of diagnosis in patients with severe disease (NLR>3.82 [50.40%] vs. combined diagnosis [72.80%]; p=0.0007; LDH>246 [59.2%] vs. combined diagnosis [72.80%]; p<0.0001). CONCLUSIONS: High levels of serum NLR and LDH have potential value in the early identification of patients with severe COVID-19. Moreover, the combination of LDH and NLR can improve the sensitivity of diagnosis.


Subject(s)
COVID-19/blood , COVID-19/diagnostic imaging , Fibrin Fibrinogen Degradation Products/metabolism , L-Lactate Dehydrogenase/blood , Lymphocytes/pathology , Neutrophils/pathology , Tomography, X-Ray Computed , Female , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Prognosis , ROC Curve
15.
PLoS Comput Biol ; 17(9): e1009334, 2021 09.
Article in English | MEDLINE | ID: covidwho-1398921

ABSTRACT

Epidemiological models can provide the dynamic evolution of a pandemic but they are based on many assumptions and parameters that have to be adjusted over the time the pandemic lasts. However, often the available data are not sufficient to identify the model parameters and hence infer the unobserved dynamics. Here, we develop a general framework for building a trustworthy data-driven epidemiological model, consisting of a workflow that integrates data acquisition and event timeline, model development, identifiability analysis, sensitivity analysis, model calibration, model robustness analysis, and projection with uncertainties in different scenarios. In particular, we apply this framework to propose a modified susceptible-exposed-infectious-recovered (SEIR) model, including new compartments and model vaccination in order to project the transmission dynamics of COVID-19 in New York City (NYC). We find that we can uniquely estimate the model parameters and accurately project the daily new infection cases, hospitalizations, and deaths, in agreement with the available data from NYC's government's website. In addition, we employ the calibrated data-driven model to study the effects of vaccination and timing of reopening indoor dining in NYC.


Subject(s)
COVID-19 , Disease Outbreaks/statistics & numerical data , Models, Statistical , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Computational Biology , Humans , New York City/epidemiology , SARS-CoV-2
16.
Emerg Microbes Infect ; 10(1): 1626-1637, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1348038

ABSTRACT

Coronaviruses (CoVs) can infect a variety of hosts, including humans, livestock and companion animals, and pose a serious threat to human health and the economy. The current COVID-19 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed millions of people. Unfortunately, effective treatments for CoVs infection are still lacking, suggesting the importance of coronavirus vaccines. Our previous work showed that CoV nonstuctural protein 14 (nsp14) functions as (guanine-N7)-methyltransferase (N7-MTase), which is involved in RNA cap formation. Moreover, we found that N7-MTase is well conserved among different CoVs and is a universal target for developing antivirals against CoVs. Here, we show that N7-MTase of CoVs can be an ideal target for designing live attenuated vaccines. Using murine hepatitis virus strain A59 (MHV-A59), a representative and well-studied model of coronaviruses, we constructed N7-MTase-deficient recombinant MHV D330A and Y414A. These two mutants are highly attenuated in mice and exhibit similar replication efficiency to the wild-type (WT) virus in the cell culture. Furthermore, a single dose immunization of D330A or Y414A can induce long-term humoral immune responses and robust CD4+ and CD8+ T cell responses, which can provide full protection against the challenge of a lethal-dose of MHV-A59. Collectively, this study provides an ideal strategy to design live attenuated vaccines for coronavirus by abolishing viral RNA N7-MTase activity. This approach may apply to other RNA viruses that encode their own conservative viral N7-methyltransferase.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Attenuated/immunology , Animals , COVID-19 Vaccines/administration & dosage , Cytokines/biosynthesis , Humans , Immunity, Cellular , Immunity, Humoral , Immunogenicity, Vaccine , Interferon Type I/biosynthesis , Male , Mice , Mutation , Vaccines, Attenuated/administration & dosage , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
17.
Int J Cardiol ; 336: 123-129, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1230514

ABSTRACT

BACKGROUND: Angiotensin converting enzyme 2 (ACE2) has recently been identified as the functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent response for novel coronavirus disease 2019 (COVID-19). This study aimed to explore the roles of ACE2, apelin and sodium-glucose cotransporter 2 (SGLT2) in SARS-CoV-2-mediated cardiorenal damage. METHODS AND RESULTS: The published RNA-sequencing datasets of cardiomyocytes infected with SARS-CoV-2 and COVID-19 patients were used. String, UMAP plots and single cell RNA sequencing data were analyzed to show the close relationship and distinct cardiorenal distribution patterns of ACE2, apelin and SGLT2. Intriguingly, there were decreases in ACE2 and apelin expression as well as marked increases in SGLT2 and endothelin-1 levels in SARS-CoV-2-infected cardiomyocytes, animal models with diabetes, acute kidney injury, heart failure and COVID-19 patients. These changes were linked with downregulated levels of interleukin (IL)-10, superoxide dismutase 2 and catalase as well as upregulated expression of profibrotic genes and pro-inflammatory cytokines/chemokines. Genetic ACE2 deletion resulted in upregulation of pro-inflammatory cytokines containing IL-1ß, IL-6, IL-17 and tumor necrosis factor α. More importantly, dapagliflozin strikingly alleviated cardiorenal fibrosis in diabetic db/db mice by suppressing SGLT2 levels and potentiating the apelin-ACE2 signaling. CONCLUSION: Downregulation of apelin and ACE2 and upregulation of SGLT2, endothelin-1 and pro-inflammatory cytokines contribute to SARS-CoV-2-mediated cardiorenal injury, indicating that the apelin-ACE2 signaling and SGLT2 inhibitors are potential therapeutic targets for COVID-19 patients.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Animals , Apelin , Humans , Mice , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Sodium-Glucose Transporter 2
18.
Front Cell Dev Biol ; 9: 648024, 2021.
Article in English | MEDLINE | ID: covidwho-1145557

ABSTRACT

Endosomes are essential cellular stations where endocytic and secretory trafficking routes converge. Proteins transiting at endosomes can be degraded via lysosome, or recycled to the plasma membrane, trans-Golgi network (TGN), or other cellular destinations. Pathways regulating endosomal recycling are tightly regulated in order to preserve organelle identity, to maintain lipid homeostasis, and to support other essential cellular functions. Recent studies have revealed that both pathogenic bacteria and viruses subvert host endosomal recycling pathways for their survival and replication. Several host factors that are frequently targeted by pathogens are being identified, including retromer, TBC1D5, SNX-BARs, and the WASH complex. In this review, we will focus on the recent advances in understanding how intracellular bacteria, human papillomavirus (HPV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijack host endosomal recycling pathways. This exciting work not only reveals distinct mechanisms employed by pathogens to manipulate host signaling pathways, but also deepens our understanding of the molecular intricacies regulating endosomal receptor trafficking.

19.
Front Psychol ; 12: 621094, 2021.
Article in English | MEDLINE | ID: covidwho-1121068

ABSTRACT

Against the scourge of the COVID-19 pandemic, college students' learning engagement has become a key issue in universities and society. Guided by the theories of existential positive psychology and social perception, we explored the positive effect of a growth mindset on learning engagement during the COVID-19 pandemic. A total of 1,040 college students from universities in Henan Province of China effectively completed online questionnaires. The results showed that growth mindset was positively related to learning engagement and negatively associated with perceived COVID-19 event strength and perceived stress; perceived COVID-19 event strength was positively related to perceived stress, while perceived COVID-19 event strength and perceived stress were negatively associated with learning engagement. Growth mindset affected learning engagement through three indirect paths: the mediating role of perceived COVID-19 event strength, the mediating role of perceived stress, and the serial mediating role of both perceived COVID-19 event strength and perceived stress. The results indicated that the growth mindset could contribute to college students' learning engagement through the roles of perceived COVID-19 event strength and perceived stress during the COVID-19 pandemic. This study advances the understanding of the mechanism underlying the relationship between growth mindset and college students' learning engagement during the COVID-19 pandemic. Furthermore, the findings of the study have important implications for promoting college students' learning engagement during the pandemic.

20.
Nat Ecol Evol ; 5(5): 600-608, 2021 05.
Article in English | MEDLINE | ID: covidwho-1111986

ABSTRACT

Bats are the suggested natural hosts for severe acute respiratory syndrome coronavirus (SARS-CoV) and the causal agent of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2. The interaction of viral spike proteins with their host receptor angiotensin-converting enzyme 2 (ACE2) is a critical determinant of potential hosts and cross-species transmission. Here we use virus-host receptor binding and infection assays to examine 46 ACE2 orthologues from phylogenetically diverse bat species, including those in close and distant contact with humans. We found that 24, 21 and 16 of them failed to support infection by SARS-CoV, SARS-CoV-2 or both viruses, respectively. Furthermore, we confirmed that infection assays in human cells were consistent with those in two bat cell lines. Additionally, we used genetic and functional analyses to identify critical residues in bat ACE2 receptors associated with viral entry restrictions. Our results suggest that many bat species may not be the potential hosts of one or both viruses and that no correlation was identified between proximity to humans and probability of being natural hosts of SARS-CoV or SARS-CoV-2. This study demonstrates dramatic variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species and adds knowledge towards a better understanding of coronavirus-bat interaction.


Subject(s)
COVID-19 , Chiroptera , Angiotensin-Converting Enzyme 2 , Animals , Humans , Peptidyl-Dipeptidase A/genetics , Receptors, Virus/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...