Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Microbiol Spectr ; : e0101721, 2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1522923


A big challenge for the control of COVID-19 pandemic is the emergence of variants of concern (VOCs) or variants of interest (VOIs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may be more transmissible and/or more virulent and could escape immunity obtained through infection or vaccination. A simple and rapid test for SARS-CoV-2 variants is an unmet need and is of great public health importance. In this study, we designed and analytically validated a CRISPR-Cas12a system for direct detection of SARS-CoV-2 VOCs. We further evaluated the combination of ordinary reverse transcription-PCR (RT-PCR) and CRISPR-Cas12a to improve the detection sensitivity and developed a universal system by introducing a protospacer adjacent motif (PAM) near the target mutation sites through PCR primer design to detect mutations without PAM. Our results indicated that the CRISPR-Cas12a assay could readily detect the signature spike protein mutations (K417N/T, L452R/Q, T478K, E484K/Q, N501Y, and D614G) to distinguish alpha, beta, gamma, delta, kappa, lambda, and epsilon variants of SARS-CoV-2. In addition, the open reading frame 8 (ORF8) mutations (T/C substitution at nt28144 and the corresponding change of amino acid L/S) could differentiate L and S lineages of SARS-CoV-2. The low limit of detection could reach 10 copies/reaction. Our assay successfully distinguished 4 SARS-CoV-2 strains of wild type and alpha (B.1.1.7), beta (B.1.351), and delta (B.1.617.2) variants. By testing 32 SARS-CoV-2-positive clinical samples infected with the wild type (n = 5) and alpha (n = 11), beta (n = 8), and delta variants (n = 8), the concordance between our assay and sequencing was 100%. The CRISPR-based approach is rapid and robust and can be adapted for screening the emerging mutations and immediately implemented in laboratories already performing nucleic acid amplification tests or in resource-limited settings. IMPORTANCE We described CRISPR-Cas12-based multiplex allele-specific assay for rapid SARS-CoV-2 variant genotyping. The new system has the potential to be quickly developed, continuously updated, and easily implemented for screening of SARS-CoV-2 variants in resource-limited settings. This approach can be adapted for emerging mutations and implemented in laboratories already conducting SARS-CoV-2 nucleic acid amplification tests using existing resources and extracted nucleic acid.

J Virol Methods ; 292: 114141, 2021 06.
Article in English | MEDLINE | ID: covidwho-1142107


In this study, we developed and evaluated a luciferase immunosorbent assay (LISA) for quantitative detection of IgG antibody against SARS-CoV-2 nucleoprotein (NP). Anti-SARS-CoV-2 NP antibody in serum or plasma samples was captured by protein G-coated microtiter plate and detected using the crude cell lysates expressing Nanoluc luciferase (Nluc) enzyme fused with SARS-CoV-2 NP. After the addition of furimazine substrate, the levels of anti-SARS-CoV-2 NP IgG antibody were quantitatively measured as luciferase light units. As expected, SARS-CoV-2 NP showed cross-reactivity with the monoclonal antibodies against SARS-CoV NP, but not MERS-CoV NP-specific monoclonal antibodies or the monoclonal antibodies against SARS-CoV Spike protein. LISA for detecting murine monoclonal antibody against SARS-CoV NP showed a low limit of detection of 0.4 pg/µl and linear detection range from 0.4 pg/µl to 75 pg/µl. Furthermore, LISA had a sensitivity of 71 % when testing COVID-19 patients at the second week post onset and a specificity of 100 % when testing healthy blood donors.

Antibodies, Viral/blood , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Cross Reactions , Humans , Luciferases
Virology ; 551: 26-35, 2020 12.
Article in English | MEDLINE | ID: covidwho-799506


BACKGROUND: SARS-CoV-2 is a novel coronavirus and the cause of COVID-19. More than 80% of COVID-19 patients exhibit mild or moderate symptoms. In this study, we investigated the dynamics of viral load and antibodies against SARS-CoV-2 in a longitudinal cohort of COVID-19 patients with severe and mild/moderate diseases. METHODS: Demographic and clinical information were obtained. Serial samples of blood, nasal and pharyngeal and anal swabs were collected at different time points post-onset. SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies were measured by qRT-PCR and immunoassays, respectively. RESULTS: Respiratory SARS-CoV-2 RNA was detectable in 58.0% (58/100) COVID-19 patients upon admission and lasted for a median of 13 days post-onset. In addition, 5.9% (1/17) and 20.2% (19/94) of the blood and anal swab specimens were positive for SARS-CoV-2 RNA, respectively. Anal viral RNA was more frequently detected in the patients who were positive for viral RNA in the respiratory samples upon admission. Specific anti-SARS-CoV-2 antibody developed within two weeks after onset, reached peak approximately 17 days post-onset and then maintained at relatively high level up to 50 days we analyzed in most patients. However, the levels of antibodies were variable among the patients. High titers of antibodies appeared to be associated with the severity of the disease. Furthermore, viral proteins from different sources showed significant difference of serological sensitivity especially during the first week post-onset. CONCLUSIONS: Our results indicate rapid clearance or self-elimination of viral RNA in about half of the COVID-19 patients upon admission. Viral RNA shedding of SARS-CoV-2 occurred in multiple tissues including the respiratory system, blood, and intestine. Variable levels of specific anti-SARS-CoV-2 antibody may be associated with disease severity. These findings have shed light on viral kinetics and antibody response in COVID-19 patients and provide scientific evidence for infection control and patient management.

COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , Female , Humans , Kinetics , Longitudinal Studies , Male , Middle Aged , Nasopharynx/virology , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Viral Load , Virus Shedding