Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296896

ABSTRACT

Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using longitudinally collected biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Using longitudinal measurements of ∼4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 upregulated and 40 downregulated proteins associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. Using longitudinal clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.

2.
J Virol ; 95(16): e0061721, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1486509

ABSTRACT

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations during the early transmission phase have altered the receptor binding affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially infectious to humans. The increased infectivity of V367 mutants was further validated by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines. IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections. The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the receptor binding affinity and made them more infectious has been the research hot spot. Given that SARS-CoV-2 is a novel coronavirus, the significance of our research is in identifying and validating the RBD mutant types emerging during the early transmission phase and increasing human angiotensin-converting enzyme 2 (ACE2) receptor binding affinity and infectivity. Our study provides insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations with increased human ACE2 affinity in human or other animals is critical to the development of new COVID-19 drugs and vaccines against these variants during the sustained COVID-19 pandemic.


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , COVID-19/transmission , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Gene Expression , Host-Pathogen Interactions/genetics , Humans , Kinetics , Molecular Dynamics Simulation , Phenylalanine/chemistry , Phenylalanine/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/classification , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Valine/chemistry , Valine/metabolism , Virulence , Virus Attachment
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-291199

ABSTRACT

Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2 positive cats and dogs in ten infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of ten farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all ten farms. This study shows evidence of SARS-CoV-2 infection in twelve feral cats and two dogs. Eleven cats (19%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10% to 18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2.

4.
PLoS ONE ; 16(2), 2021.
Article in English | CAB Abstracts | ID: covidwho-1410684

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated Coronavirus Disease 2019 (COVID-19) is a public health emergency. Acute kidney injury (AKI) is a common complication in hospitalized patients with COVID-19 although mechanisms underlying AKI are yet unclear. There may be a direct effect of SARS-CoV-2 virus on the kidney;however, there is currently no data linking SARS-CoV-2 viral load (VL) to AKI. We explored the association of SARS-CoV-2 VL at admission to AKI in a large diverse cohort of hospitalized patients with COVID-19. Methods and findings: We included patients hospitalized between March 13th and May 19th, 2020 with SARS-CoV-2 in a large academic healthcare system in New York City (N = 1,049) with available VL at admission quantified by real-time RT-PCR. We extracted clinical and outcome data from our institutional electronic health records (EHRs). AKI was defined by KDIGO guidelines. We fit a Fine-Gray competing risks model (with death as a competing risk) using demographics, comorbidities, admission severity scores, and log10 transformed VL as covariates and generated adjusted hazard ratios (aHR) and 95% Confidence Intervals (CIs). VL was associated with an increased risk of AKI (aHR = 1.04, 95% CI: 1.01-1.08, p = 0.02) with a 4% increased hazard for each log10 VL change. Patients with a viral load in the top 50th percentile had an increased adjusted hazard of 1.27 (95% CI: 1.02-1.58, p = 0.03) for AKI as compared to those in the bottom 50th percentile. Conclusions: VL is weakly but significantly associated with in-hospital AKI after adjusting for confounders. This may indicate the role of VL in COVID-19 associated AKI. This data may inform future studies to discover the mechanistic basis of COVID-19 associated AKI.

5.
Transbound Emerg Dis ; 2021 Jun 03.
Article in English | MEDLINE | ID: covidwho-1388408

ABSTRACT

Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%-18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2.

6.
One Health ; 13: 100313, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1364384

ABSTRACT

Assays to measure SARS-CoV-2-specific neutralizing antibodies are important to monitor seroprevalence, to study asymptomatic infections and to reveal (intermediate) hosts. A recently developed assay, the surrogate virus-neutralization test (sVNT) is a quick and commercially available alternative to the "gold standard" virus neutralization assay using authentic virus, and does not require processing at BSL-3 level. The assay relies on the inhibition of binding of the receptor binding domain (RBD) on the spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) by antibodies present in sera. As the sVNT does not require species- or isotype-specific conjugates, it can be similarly used for antibody detection in human and animal sera. In this study, we used 298 sera from PCR-confirmed COVID-19 patients and 151 sera from patients confirmed with other coronavirus or other (respiratory) infections, to evaluate the performance of the sVNT. To analyze the use of the assay in a One Health setting, we studied the presence of RBD-binding antibodies in 154 sera from nine animal species (cynomolgus and rhesus macaques, ferrets, rabbits, hamsters, cats, cattle, mink and dromedary camels). The sVNT showed a moderate to high sensitivity and a high specificity using sera from confirmed COVID-19 patients (91.3% and 100%, respectively) and animal sera (93.9% and 100%), however it lacked sensitivity to detect low titers. Significant correlations were found between the sVNT outcomes and PRNT50 and the Wantai total Ig and IgM ELISAs. While species-specific validation will be essential, our results show that the sVNT holds promise in detecting RBD-binding antibodies in multiple species.

7.
Viruses ; 13(8)2021 07 26.
Article in English | MEDLINE | ID: covidwho-1325792

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people globally since its first detection in late 2019. Besides humans, cats and, to some extent, dogs were shown to be susceptible to SARS-CoV-2, highlighting the need for surveillance in a One Health context. Seven veterinary clinics from regions with high incidences of coronavirus disease (COVID-19) were recruited during the early pandemic (March to July 2020) for the screening of patients. A total of 2257 oropharyngeal and nasal swab specimen from 877 dogs and 260 cats (including 18 animals from COVID-19-affected households and 92 animals with signs of respiratory disease) were analyzed for the presence of SARS-CoV-2 RNA using reverse transcriptase real-time polymerase chain reaction (RT-qPCR) targeting the viral envelope (E) and RNA dependent RNA polymerase (RdRp) genes. One oropharyngeal swab from an Italian cat, living in a COVID-19-affected household in Piedmont, tested positive in RT-qPCR (1/260; 0.38%, 95% CI: 0.01-2.1%), and SARS-CoV-2 infection of the animal was serologically confirmed six months later. One oropharyngeal swab from a dog was potentially positive (1/877; 0.1%, 95% CI: 0.002-0.63%), but the result was not confirmed in a reference laboratory. Analyses of convenience sera from 118 animals identified one dog (1/94; 1.1%; 95% CI: 0.02-5.7%) from Lombardy, but no cats (0/24), as positive for anti-SARS-CoV-2 receptor binding domain (RBD) antibodies and neutralizing activity. These findings support the hypothesis that the prevalence of SARS-CoV-2 infection in pet cat and dog populations, and hence, the risk of zoonotic transmission to veterinary staff, was low during the first wave of the pandemic, even in hotspot areas.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , Dog Diseases/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Cat Diseases/diagnosis , Cat Diseases/epidemiology , Cats , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dogs , Female , Germany/epidemiology , Italy/epidemiology , Male , Oropharynx/virology , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics
8.
Emerg Infect Dis ; 27(5): 1362-1370, 2021 05.
Article in English | MEDLINE | ID: covidwho-1202205

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect many animal species, including minks, cats, and dogs. To gain insights into SARS-CoV-2 infections in cats and dogs, we developed and validated a set of serologic assays, including ELISA and virus neutralization. Evaluation of samples from animals before they acquired coronavirus disease and samples from cats roaming SARS-CoV-2-positive mink farms confirmed the suitability of these assays for specific antibody detection. Furthermore, our findings exclude SARS-CoV-2 nucleocapsid protein as an antigen for serologic screening of cat and dog samples. We analyzed 500 serum samples from domestic cats and dogs in the Netherlands during April-May 2020. We showed 0.4% of cats and 0.2% of dogs were seropositive. Although seroprevalence in cats and dogs that had unknown SARS-CoV-2 exposure was low during the first coronavirus disease wave, our data stress the need for development of continuous serosurveillance for SARS-CoV-2 in these 2 animal species.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cats , Dogs , Humans , Mink , Netherlands/epidemiology , Seroepidemiologic Studies
10.
Transfus Med Hemother ; 48(3): 168-172, 2021 May.
Article in English | MEDLINE | ID: covidwho-1166622

ABSTRACT

INTRODUCTION: Thrombosis occurs frequently in COVID-19. While the exact mechanism is unclear, 3 processes seem to play important roles in sepsis-related thrombosis and mortality: tissue factor expression on circulating monocytes and microparticles, hypercoagulability (increased clot firmness), and hypofibrinolysis. Rotational thromboelastometry is a point-of-care viscoelastic technique that uses the viscoelastic properties of blood to monitor coagulation. Using various assays, viscoelastometry could monitor this triad of changes in severely ill, COVID-19-positive patients. Similarly, with the increased incidence of coagulopathy, many patients are placed on anticoagulants, making management more difficult depending on the agents utilized. Viscoelastometry might also be used in these settings to monitor anticoagulation status and guide therapy, as it has in other areas. CASE PRESENTATION: We present a case series of 6 patients with different stages of disease and different management plans. These cases occurred at the height of the pandemic in New York City, which limited testing abilities. We first discuss the idea of using the NaHEPTEM test as a marker of tissue factor expression in COVID-19. We then present cases where patients are on different anticoagulants and review how viscoelastometry might be used in a patient on anticoagulation with COVID-19. CONCLUSION: In a disease such as COVID-19, which has profound effects on hemostasis and coagulation, viscoelastometry may aid in patient triage, disease course monitoring, and anticoagulation management.

11.
Viruses ; 13(3)2021 03 23.
Article in English | MEDLINE | ID: covidwho-1154523

ABSTRACT

Since the coronavirus disease (COVID-19) pandemic was first identified in early 2020, rare cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in pet cats have been reported worldwide. Some reports of cats with SARS-CoV-2 showed self-limiting respiratory or gastrointestinal disease after suspected human-to-feline transmission via close contact with humans with SARS-CoV-2. In the present study, we investigated a cat with SARS-CoV-2 that was presented to a private animal clinic in Northern Italy in May 2020 in a weak clinical condition due to an underlying intestinal B-cell lymphoma. The cat developed signs of respiratory tract disease, including a sneeze, a cough and ocular discharge, three days after an oropharyngeal swab tested positive for SARS-CoV-2 viral RNA using two real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays for the envelope (E) and RNA-dependent RNA polymerase (RdRp) gene. Thus, SARS-CoV-2 viral RNA was detectable prior to the onset of clinical signs. Five and six months after positive molecular results, the serological testing substantiated the presence of a SARS-CoV-2 infection in the cat with the detection of anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin (IgG) antibodies and neutralizing activity in a surrogate virus neutralization assay (sVNT). To the best of our knowledge, this extends the known duration of seropositivity of SARS-CoV-2 in a cat. Our study provides further evidence that cats are susceptible to SARS-CoV-2 under natural conditions and strengthens the assumption that comorbidities may play a role in the development of clinical disease.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/veterinary , Cat Diseases/immunology , Lymphoma, B-Cell/veterinary , Animals , Antibody Formation , COVID-19/immunology , COVID-19/virology , Cat Diseases/virology , Cats , Immunoglobulin G/immunology , Italy , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
12.
Viruses ; 13(3)2021 03 17.
Article in English | MEDLINE | ID: covidwho-1138760

ABSTRACT

Since the emergence of coronavirus disease (COVID-19) in late 2019, domestic cats have been demonstrated to be susceptible to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) under natural and experimental conditions. As pet cats often live in very close contact with their owners, it is essential to investigate SARS-CoV-2 infections in cats in a One-Health context. This study reports the first SARS-CoV-2 infection in a cat in a COVID-19-affected household in Switzerland. The cat (Cat 1) demonstrated signs of an upper respiratory tract infection, including sneezing, inappetence, and apathy, while the cohabiting cat (Cat 2) remained asymptomatic. Nasal, oral, fecal, fur, and environmental swab samples were collected twice from both cats and analyzed by RT-qPCR for the presence of SARS-CoV-2 viral RNA. Both nasal swabs from Cat 1 tested positive. In addition, the first oral swab from Cat 2 and fur and bedding swabs from both cats were RT-qPCR positive. The fecal swabs tested negative. The infection of Cat 1 was confirmed by positive SARS-CoV-2 S1 receptor binding domain (RBD) antibody testing and neutralizing activity in a surrogate assay. The viral genome sequence from Cat 1, obtained by next generation sequencing, showed the closest relation to a human sequence from the B.1.1.39 lineage, with one single nucleotide polymorphism (SNP) difference. This study demonstrates not only SARS-CoV-2 infection of a cat from a COVID-19-affected household but also contamination of the cats' fur and bed with viral RNA. Our results are important to create awareness that SARS-CoV-2 infected people should observe hygienic measures to avoid infection and contamination of animal cohabitants.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , Genome, Viral , SARS-CoV-2/isolation & purification , Animals , COVID-19/diagnosis , COVID-19/virology , Cat Diseases/diagnosis , Cats , Feces/virology , Male , Phylogeny , Polymorphism, Single Nucleotide , RNA, Viral/genetics , SARS-CoV-2/classification , SARS-CoV-2/genetics , Switzerland
14.
J Am Soc Nephrol ; 32(1): 151-160, 2021 01.
Article in English | MEDLINE | ID: covidwho-1080996

ABSTRACT

BACKGROUND: Early reports indicate that AKI is common among patients with coronavirus disease 2019 (COVID-19) and associated with worse outcomes. However, AKI among hospitalized patients with COVID-19 in the United States is not well described. METHODS: This retrospective, observational study involved a review of data from electronic health records of patients aged ≥18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020. We describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aORs) with mortality. RESULTS: Of 3993 hospitalized patients with COVID-19, AKI occurred in 1835 (46%) patients; 347 (19%) of the patients with AKI required dialysis. The proportions with stages 1, 2, or 3 AKI were 39%, 19%, and 42%, respectively. A total of 976 (24%) patients were admitted to intensive care, and 745 (76%) experienced AKI. Of the 435 patients with AKI and urine studies, 84% had proteinuria, 81% had hematuria, and 60% had leukocyturia. Independent predictors of severe AKI were CKD, men, and higher serum potassium at admission. In-hospital mortality was 50% among patients with AKI versus 8% among those without AKI (aOR, 9.2; 95% confidence interval, 7.5 to 11.3). Of survivors with AKI who were discharged, 35% had not recovered to baseline kidney function by the time of discharge. An additional 28 of 77 (36%) patients who had not recovered kidney function at discharge did so on posthospital follow-up. CONCLUSIONS: AKI is common among patients hospitalized with COVID-19 and is associated with high mortality. Of all patients with AKI, only 30% survived with recovery of kidney function by the time of discharge.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , SARS-CoV-2 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Acute Kidney Injury/urine , Aged , Aged, 80 and over , COVID-19/mortality , Female , Hematuria/etiology , Hospital Mortality , Hospitals, Private/statistics & numerical data , Hospitals, Urban/statistics & numerical data , Humans , Incidence , Inpatients , Leukocytes , Male , Middle Aged , New York City/epidemiology , Proteinuria/etiology , Renal Dialysis , Retrospective Studies , Treatment Outcome , Urine/cytology
15.
JMIR Med Inform ; 9(1): e24207, 2021 Jan 27.
Article in English | MEDLINE | ID: covidwho-1052474

ABSTRACT

BACKGROUND: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. OBJECTIVE: We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. METHODS: Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. RESULTS: The LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals. CONCLUSIONS: The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.

16.
Front Immunol ; 11: 602256, 2020.
Article in English | MEDLINE | ID: covidwho-1021889

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, and has been pandemic since March 2020 and led to many fatalities. Vaccines represent the most efficient means to control and stop the pandemic of COVID-19. However, currently there is no effective COVID-19 vaccine approved to use worldwide except for two human adenovirus vector vaccines, three inactivated vaccines, and one peptide vaccine for early or limited use in China and Russia. Safe and effective vaccines against COVID-19 are in urgent need. Researchers around the world are developing 213 COVID-19 candidate vaccines, among which 44 are in human trials. In this review, we summarize and analyze vaccine progress against SARS-CoV, Middle-East respiratory syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, including inactivated vaccines, live attenuated vaccines, subunit vaccines, virus like particles, nucleic acid vaccines, and viral vector vaccines. As SARS-CoV-2, SARS-CoV, and MERS-CoV share the common genus, Betacoronavirus, this review of the major research progress will provide a reference and new insights into the COVID-19 vaccine design and development.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2 , Vaccines , Animals , Antibody-Dependent Enhancement , Humans , SARS-CoV-2/physiology
17.
Clin Infect Dis ; 71(11): 2933-2938, 2020 12 31.
Article in English | MEDLINE | ID: covidwho-1003539

ABSTRACT

BACKGROUND: There are limited data regarding the clinical impact of coronavirus disease 2019 (COVID-19) on people living with human immunodeficiency virus (PLWH). In this study, we compared outcomes for PLWH with COVID-19 to a matched comparison group. METHODS: We identified 88 PLWH hospitalized with laboratory-confirmed COVID-19 in our hospital system in New York City between 12 March and 23 April 2020. We collected data on baseline clinical characteristics, laboratory values, HIV status, treatment, and outcomes from this group and matched comparators (1 PLWH to up to 5 patients by age, sex, race/ethnicity, and calendar week of infection). We compared clinical characteristics and outcomes (death, mechanical ventilation, hospital discharge) for these groups, as well as cumulative incidence of death by HIV status. RESULTS: Patients did not differ significantly by HIV status by age, sex, or race/ethnicity due to the matching algorithm. PLWH hospitalized with COVID-19 had high proportions of HIV virologic control on antiretroviral therapy. PLWH had greater proportions of smoking (P < .001) and comorbid illness than uninfected comparators. There was no difference in COVID-19 severity on admission by HIV status (P = .15). Poor outcomes for hospitalized PLWH were frequent but similar to proportions in comparators; 18% required mechanical ventilation and 21% died during follow-up (compared with 23% and 20%, respectively). There was similar cumulative incidence of death over time by HIV status (P = .94). CONCLUSIONS: We found no differences in adverse outcomes associated with HIV infection for hospitalized COVID-19 patients compared with a demographically similar patient group.


Subject(s)
COVID-19 , Coronavirus , HIV Infections , COVID-19/mortality , COVID-19/therapy , HIV , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , New York City/epidemiology , Patient Discharge , Respiration, Artificial , SARS-CoV-2 , Treatment Outcome
18.
J Med Internet Res ; 22(11): e24018, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-979821

ABSTRACT

BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. OBJECTIVE: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. METHODS: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19-positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. RESULTS: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. CONCLUSIONS: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Machine Learning/standards , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Acute Kidney Injury/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Cohort Studies , Electronic Health Records , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Hospitals , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Prognosis , ROC Curve , Risk Assessment/methods , Risk Assessment/standards , SARS-CoV-2 , Young Adult
19.
J Am Coll Cardiol ; 76(16): 1815-1826, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-849705

ABSTRACT

BACKGROUND: Thromboembolic disease is common in coronavirus disease-2019 (COVID-19). There is limited evidence on the association of in-hospital anticoagulation (AC) with outcomes and postmortem findings. OBJECTIVES: The purpose of this study was to examine association of AC with in-hospital outcomes and describe thromboembolic findings on autopsies. METHODS: This retrospective analysis examined the association of AC with mortality, intubation, and major bleeding. Subanalyses were also conducted on the association of therapeutic versus prophylactic AC initiated ≤48 h from admission. Thromboembolic disease was contextualized by premortem AC among consecutive autopsies. RESULTS: Among 4,389 patients, median age was 65 years with 44% women. Compared with no AC (n = 1,530; 34.9%), therapeutic AC (n = 900; 20.5%) and prophylactic AC (n = 1,959; 44.6%) were associated with lower in-hospital mortality (adjusted hazard ratio [aHR]: 0.53; 95% confidence interval [CI]: 0.45 to 0.62 and aHR: 0.50; 95% CI: 0.45 to 0.57, respectively), and intubation (aHR: 0.69; 95% CI: 0.51 to 0.94 and aHR: 0.72; 95% CI: 0.58 to 0.89, respectively). When initiated ≤48 h from admission, there was no statistically significant difference between therapeutic (n = 766) versus prophylactic AC (n = 1,860) (aHR: 0.86; 95% CI: 0.73 to 1.02; p = 0.08). Overall, 89 patients (2%) had major bleeding adjudicated by clinician review, with 27 of 900 (3.0%) on therapeutic, 33 of 1,959 (1.7%) on prophylactic, and 29 of 1,530 (1.9%) on no AC. Of 26 autopsies, 11 (42%) had thromboembolic disease not clinically suspected and 3 of 11 (27%) were on therapeutic AC. CONCLUSIONS: AC was associated with lower mortality and intubation among hospitalized COVID-19 patients. Compared with prophylactic AC, therapeutic AC was associated with lower mortality, although not statistically significant. Autopsies revealed frequent thromboembolic disease. These data may inform trials to determine optimal AC regimens.


Subject(s)
Anticoagulants , Autopsy/statistics & numerical data , Coronavirus Infections , Hospitalization/statistics & numerical data , Pandemics , Pneumonia, Viral , Post-Exposure Prophylaxis , Thromboembolism , Aged , Anticoagulants/classification , Anticoagulants/therapeutic use , Betacoronavirus/isolation & purification , Blood Coagulation , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Female , Hemorrhage/chemically induced , Hemorrhage/prevention & control , Hospital Mortality , Humans , Male , New York City/epidemiology , Outcome and Process Assessment, Health Care , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Post-Exposure Prophylaxis/methods , Post-Exposure Prophylaxis/statistics & numerical data , Risk Adjustment/methods , SARS-CoV-2 , Thromboembolism/drug therapy , Thromboembolism/mortality , Thromboembolism/prevention & control , Thromboembolism/virology
SELECTION OF CITATIONS
SEARCH DETAIL