Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mar Policy ; 153: 105664, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2320893

ABSTRACT

The COVID-19 pandemic led to port congestion and disruption to global logistics and supply chains. While previous research has examined the impact on port performance and economics, social issues, such as the impact on port personnel (including pilots), have been overlooked. In this context, this paper examines the challenges experienced by Chinese pilots during the pandemic through in-depth interviews with 28 pilots. It shows that the draconian pandemic control measures adopted in China, rather than the pandemic itself, impaired pilots' physical and mental health, reduced their availability, and introduced new safety hazards, which curtailed both the port's capacity and ability to provide efficient and safe pilotage and resulted in sub-standard services. The findings suggest that there is a serious issue regarding the absence of effective mechanisms for pilots to raise their health and safety concerns and how these might be addressed by port administrators and/or local authorities. Worker participation and involvement in occupational health and safety management was problematic. These findings have implications for pilot station management at both company and government administrative and legislative levels.

2.
Mar Policy ; 153: 105643, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2311843

ABSTRACT

Though the COVID-19 pandemic is drawing to a close, very little is known about the impact of China's zero-COVID policy on Chinese seafarers. This paper examines Chinese seafarers' experiences of fatigue during the pandemic. It adopted a mix-method research design involving two quantitative surveys conducted with seafarers before and during the pandemic and 35 in-depth interviews with both seafarers and managers. All the participants were from two Chinese shipping companies. The comparisons between the two surveys show that Chinese seafarers experienced significantly higher levels of fatigue during the pandemic. The interview data suggest a range of factors underpinning the higher levels of fatigue including fear of being infected, increased workload, wearing of four-piece personal protection equipment (PPE), the deprivation of shore leaves, and the prolonged service time. More importantly, the data indicate that the draconian zero-COVID policy in China and the related policy guidelines for Chinese shipping companies and seafarers reinforce these factors. This research extends previous research by providing an exclusive and comprehensive examination of seafarer fatigue during the pandemic and revealing that the policies adopted by seafarers' home countries can have profound implications for seafarers' experiences of fatigue. Suggestions are provided at the end of the paper.

3.
MedComm ; 4(2), 2023.
Article in English | EuropePMC | ID: covidwho-2276096

ABSTRACT

BA.4 and BA.5 (BA.4/5), the subvariants of Omicron, are more transmissible than BA.1 with more robust immune evasion capability because of its unique spike protein mutations. In light of such situation, the vaccination against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is in desperate need of the third booster. It has been reported that heterologous boosters might produce more effective immunity against wild‐type SARS‐CoV‐2 and the variants. Additionally, the third heterologous protein subunit booster should be considered potentially. In the present study, we prepared a Delta full‐length spike protein sequence‐based mRNA vaccine as the "priming” shot and developed a recombinant trimeric receptor‐binding domain (RBD) protein vaccine referred to as RBD–HR/trimer as a third heterologous booster. Compared to the homologous mRNA group, the heterologous group (RBD–HR/trimer vaccine primed with two mRNA vaccines) induced higher neutralizing antibody titers against BA.4/5‐included SARS‐CoV‐2 variants. In addition, heterologous vaccination exhibited stronger cellular immune response and long‐lasting memory response than the homologous mRNA vaccine. In conclusion, a third heterologous boosting with RBD–HR/trimer following two‐dose mRNA priming vaccination should be a superior strategy than a third homologous mRNA vaccine. The RBD–HR/trimer vaccine becomes an appropriate candidate for a booster immune injection. We prepared a Delta full‐length spike protein sequence‐based mRNA vaccine (Figure A, B) and developed a recombinant trimeric receptor‐binding domain (RBD) protein vaccine (Figure C). Later, the mRNA vaccine was injected as the "priming” shot, and the RBD–HR/trimer vaccine was used as a third heterologous booster (Figure D).

4.
MedComm (2020) ; 4(2): e238, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2276095

ABSTRACT

BA.4 and BA.5 (BA.4/5), the subvariants of Omicron, are more transmissible than BA.1 with more robust immune evasion capability because of its unique spike protein mutations. In light of such situation, the vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in desperate need of the third booster. It has been reported that heterologous boosters might produce more effective immunity against wild-type SARS-CoV-2 and the variants. Additionally, the third heterologous protein subunit booster should be considered potentially. In the present study, we prepared a Delta full-length spike protein sequence-based mRNA vaccine as the "priming" shot and developed a recombinant trimeric receptor-binding domain (RBD) protein vaccine referred to as RBD-HR/trimer as a third heterologous booster. Compared to the homologous mRNA group, the heterologous group (RBD-HR/trimer vaccine primed with two mRNA vaccines) induced higher neutralizing antibody titers against BA.4/5-included SARS-CoV-2 variants. In addition, heterologous vaccination exhibited stronger cellular immune response and long-lasting memory response than the homologous mRNA vaccine. In conclusion, a third heterologous boosting with RBD-HR/trimer following two-dose mRNA priming vaccination should be a superior strategy than a third homologous mRNA vaccine. The RBD-HR/trimer vaccine becomes an appropriate candidate for a booster immune injection.

5.
Nat Commun ; 13(1): 5459, 2022 09 17.
Article in English | MEDLINE | ID: covidwho-2036822

ABSTRACT

The recently emerged Omicron (B.1.1.529) variant has rapidly surpassed Delta to become the predominant circulating SARS-CoV-2 variant, given the higher transmissibility rate and immune escape ability, resulting in breakthrough infections in vaccinated individuals. A new generation of SARS-CoV-2 vaccines targeting the Omicron variant are urgently needed. Here, we developed a subunit vaccine named RBD-HR/trimer by directly linking the sequence of RBD derived from the Delta variant (containing L452R and T478K) and HR1 and HR2 in SARS-CoV-2 S2 subunit in a tandem manner, which can self-assemble into a trimer. In multiple animal models, vaccination of RBD-HR/trimer formulated with MF59-like oil-in-water adjuvant elicited sustained humoral immune response with high levels of broad-spectrum neutralizing antibodies against Omicron variants, also inducing a strong T cell immune response in vivo. In addition, our RBD-HR/trimer vaccine showed a strong boosting effect against Omicron variants after two doses of mRNA vaccines, featuring its capacity to be used in a prime-boost regimen. In mice and non-human primates, RBD-HR/trimer vaccination could confer a complete protection against live virus challenge of Omicron and Delta variants. The results qualified RBD-HR/trimer vaccine as a promising next-generation vaccine candidate for prevention of SARS-CoV-2, which deserved further evaluation in clinical trials.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Protein Subunits , SARS-CoV-2 , Vaccines, Subunit , Water
6.
Cell Mol Immunol ; 19(5): 577-587, 2022 05.
Article in English | MEDLINE | ID: covidwho-1830043

ABSTRACT

Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell-cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Histones , Mice , N-Acetylneuraminic Acid , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
9.
Nature ; 586(7830): 572-577, 2020 10.
Article in English | MEDLINE | ID: covidwho-691301

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells1,2. Here we show that a recombinant vaccine that comprises residues 319-545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (Macaca mulatta) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19 , COVID-19 Vaccines , Humans , Macaca mulatta/immunology , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Models, Molecular , Protein Domains , SARS-CoV-2 , Serum/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL