Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Engineering (Beijing) ; 2021 Jun 26.
Article in English | MEDLINE | ID: covidwho-1284079


Many microorganisms have mechanisms that protect cells against attack from viruses. The fermentation components of Streptomyces sp. 1647 exhibit potent anti-influenza A virus (IAV) activity. This strain was isolated from soil in southern China in the 1970s, but the chemical nature of its antiviral substance(s) has remained unknown until now. We used an integrated multi-omics strategy to identify the antiviral agents from this streptomycete. The antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) analysis of its genome sequence revealed 38 biosynthetic gene clusters (BGCs) for secondary metabolites, and the target BGCs possibly responsible for the production of antiviral components were narrowed down to three BGCs by bioactivity-guided comparative transcriptomics analysis. Through bioinformatics analysis and genetic manipulation of the regulators and a biosynthetic gene, cluster 36 was identified as the BGC responsible for the biosynthesis of the antiviral compounds. Bioactivity-based molecular networking analysis of mass spectrometric data from different recombinant strains illustrated that the antiviral compounds were a class of structural analogues. Finally, 18 pseudo-tetrapeptides with an internal ureido linkage, omicsynins A1-A6, B1-B6, and C1-C6, were identified and/or isolated from fermentation broth. Among them, 11 compounds (omicsynins A1, A2, A6, B1-B3, B5, B6, C1, C2, and C6) are new compounds. Omicsynins B1-B4 exhibited potent antiviral activity against IAV with the 50% inhibitory concentration (IC50) of approximately 1 µmol∙L-1 and a selectivity index (SI) ranging from 100 to 300. Omicsynins B1-B4 also showed significant antiviral activity against human coronavirus HCoV-229E. By integrating multi-omics data, we discovered a number of novel antiviral pseudo-tetrapeptides produced by Streptomyces sp. 1647, indicating that the secondary metabolites of microorganisms are a valuable source of novel antivirals.

Front Public Health ; 9: 689870, 2021.
Article in English | MEDLINE | ID: covidwho-1282426


China is an emerging country, and government intervention is always considered as an important part of the solutions when people facing challenges in China. Under the impact of the coronavirus disease 2019 (COVID-19) epidemic and the global economic downturn, the Chinese government quickly brought the epidemic under control and restored the positive economic growth through strong intervention. Based on the panel data of provincial level in China and the government intervention as the threshold variable, this paper empirically analyzed the non-linear effect of business cycle on population health by using the panel threshold regression model. The empirical results show that the impact of the business cycle on population health is significantly negative, and government intervention has a single threshold effect on the relationship between business cycle and population health. When the government intervention is below the threshold value, the business cycle has a significant negative effect on the improvement of the population health level; when the level of government intervention exceeds the threshold value, the relationship between business cycle and population health becomes significantly positive. To some extent, the conclusions of this paper can guide the formulation and revision of government health policy and help to adjust the direction and intensity of government intervention. The Chinese government and other governments of emerging countries should do more to harness the power of state intervention in their response to the business cycle.

Commerce , Government , Population Health , COVID-19 , China/epidemiology , Humans