Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Biol Sci ; 18(12): 4658-4668, 2022.
Article in English | MEDLINE | ID: covidwho-1954697

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. Intermediate horseshoe bats (Rhinolophus affinis) are hosts of RaTG13, the second most phylogenetically related viruses to SARS-CoV-2. We report the binding between intermediate horseshoe bat ACE2 (bACE2-Ra) and SARS-CoV-2 receptor-binding domain (RBD), supporting the pseudotyped SARS-CoV-2 viral infection. A 3.3 Å resolution crystal structure of the bACE2-Ra/SARS-CoV-2 RBD complex was determined. The interaction networks of Patch 1 showed differences in R34 and E35 of bACE2-Ra compared to hACE2 and big-eared horseshoe bat ACE2 (bACE2-Rm). The E35K substitution, existing in other species, significantly enhanced the binding affinity owing to its electrostatic attraction with E484 of SARS-CoV-2 RBD. Furthermore, bACE2-Ra showed extensive support for the SARS-CoV-2 variants. These results broaden our knowledge of the ACE2/RBD interaction mechanism and emphasize the importance of continued surveillance of intermediate horseshoe bats to prevent spillover risk.


Subject(s)
Angiotensin-Converting Enzyme 2 , Chiroptera , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Protein Binding
2.
Cell Discov ; 8(1): 65, 2022 Jul 12.
Article in English | MEDLINE | ID: covidwho-1931380

ABSTRACT

The Omicron variant of SARS-CoV-2 carries multiple unusual mutations, particularly in the receptor-binding domain (RBD) of the spike (S) protein. Moreover, host-adapting mutations, such as residues 493, 498, and 501, were also observed in the Omicron RBD, which indicates that it is necessary to evaluate the interspecies transmission risk of the Omicron variant. Herein, we evaluated the interspecies recognition of the Omicron BA.1 and Delta RBDs by 27 ACE2 orthologs, including humans. We found that Omicron BA.1 expanded its receptor binding spectra to palm-civet, rodents, more bats (least horseshoe bat and greater horseshoe bat) and lesser hedgehog tenrec. Additionally, we determined the cryo-electron microscopy (cryo-EM) structure of the Omicron BA.1 S protein complexed with mouse ACE2 (mACE2) and the crystal structure of Omicron RBD complexed with palm-civet ACE2 (cvACE2). Several key residues for the host range have been identified. These results suggest that surveillance should be enhanced on the Omicron variant for its broader-species receptor binding to prevent spillover and expansion of reservoir hosts for a prolonged pandemic.

3.
Nat Commun ; 13(1): 3547, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1900489

ABSTRACT

The origin and host range of SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), are important scientific questions as they might provide insight into understanding of the potential future spillover to infect humans. Here, we tested the binding between equine angiotensin converting enzyme 2 (eqACE2) and the receptor binding domains (RBDs) of SARS-CoV, SARS-CoV-2 prototype (PT) and variant of concerns (VOCs), as well as their close relatives bat-origin coronavirus (CoV) RaTG13 and pangolin-origin CoVs GX/P2V/2017 and GD/1/2019. We also determined the crystal structures of eqACE2/RaTG13-RBD, eqACE2/SARS-CoV-2 PT-RBD and eqACE2/Omicron BA.1-RBD. We identified S494 of SARS-COV-2 PT-RBD as an important residue in the eqACE2/SARS-COV-2 PT-RBD interaction and found that N501Y, the commonly recognized enhancing mutation, attenuated the binding affinity with eqACE2. Our work demonstrates that horses are potential targets for SARS-CoV-2 and highlights the importance of continuous surveillance on SARS-CoV-2 and related CoVs to prevent spillover events.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Horses , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Immunity ; 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1885835

ABSTRACT

SARS-CoV-2 Omicron variant has presented significant challenges to current antibodies and vaccines. Herein, we systematically compared the efficacy of 50 human monoclonal antibodies (mAbs), covering the seven identified epitope classes of the SARS-CoV-2 RBD, against Omicron sub-variants BA.1, BA.1.1, BA.2, and BA.3. Binding and pseudovirus-based neutralizing assays revealed that 37 of the 50 mAbs lost neutralizing activities, whereas the others displayed variably decreased activities against the four Omicron sub-variants. BA.2 was found to be more sensitive to RBD-5 antibodies than the other sub-variants. Furthermore, a quaternary complex structure of BA.1 RBD with three mAbs showing different neutralizing potencies against Omicron provided a basis for understanding the immune evasion of Omicron sub-variants and revealed the lack of G446S mutation accounting for the sensitivity of BA.2 to RBD-5 mAbs. Our results may guide the application of the available mAbs and facilitate the development of universal therapeutic antibodies and vaccines against COVID-19.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-325218

ABSTRACT

SARS-CoV-2 can infect many domestic animals, including dogs. Herein, we show that dog angiotensin converting enzyme 2 (dACE2) can bind to SARS-CoV-2 spike (S) protein receptor binding region (RBD), and that both pseudotyped and authentic SARS-CoV-2 can infect dACE2-expressing cells. we solved the crystal structure of RBD in complex with dACE2 and found that the total numbers of contact residues, contact atoms, hydrogen bonds and salt bridges at the binding interface in this complex are slightly fewer than those in the complex of the RBD and human ACE2 (hACE2). This result is consistent with the fact that the binding affinity of RBD to dACE2 is lower than that to hACE2. We further show that a few important mutations in the RBD binding interface play a pivotal role in the binding affinity of RBD to both dACE2 and hACE2, and need intense monitoring and controlling.

9.
Nat Commun ; 12(1): 6103, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475296

ABSTRACT

Multiple SARS-CoV-2 variants of concern (VOCs) have been emerging and some have been linked to an increase in case numbers globally. However, there is yet a lack of understanding of the molecular basis for the interactions between the human ACE2 (hACE2) receptor and these VOCs. Here we examined several VOCs including Alpha, Beta, and Gamma, and demonstrate that five variants receptor-binding domain (RBD) increased binding affinity for hACE2, and four variants pseudoviruses increased entry into susceptible cells. Crystal structures of hACE2-RBD complexes help identify the key residues facilitating changes in hACE2 binding affinity. Additionally, soluble hACE2 protein efficiently prevent most of the variants pseudoviruses. Our findings provide important molecular information and may help the development of novel therapeutic and prophylactic agents targeting these emerging mutants.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/isolation & purification , Angiotensin-Converting Enzyme 2/ultrastructure , Animals , Cell Line, Tumor , Crystallography, X-Ray , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus/ultrastructure , Spodoptera , Surface Plasmon Resonance , Virus Attachment , Virus Internalization
11.
Nat Commun ; 12(1): 4195, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1301166

ABSTRACT

SARS-CoV-2 can infect many domestic animals, including dogs. Herein, we show that dog angiotensin-converting enzyme 2 (dACE2) can bind to the SARS-CoV-2 spike (S) protein receptor binding domain (RBD), and that both pseudotyped and authentic SARS-CoV-2 can infect dACE2-expressing cells. We solved the crystal structure of RBD in complex with dACE2 and found that the total number of contact residues, contact atoms, hydrogen bonds and salt bridges at the binding interface in this complex are slightly fewer than those in the complex of the RBD and human ACE2 (hACE2). This result is consistent with the fact that the binding affinity of RBD to dACE2 is lower than that of hACE2. We further show that a few important mutations in the RBD binding interface play a pivotal role in the binding affinity of RBD to both dACE2 and hACE2. Our work reveals a molecular basis for cross-species transmission and potential animal spread of SARS-CoV-2, and provides new clues to block the potential transmission chains of this virus.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Animals , Binding Sites , Cell Line , Cricetinae , Crystallography, X-Ray , Dogs , HeLa Cells , Humans , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
12.
Cell ; 184(13): 3438-3451.e10, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1275185

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide, causing a global pandemic. Bat-origin RaTG13 is currently the most phylogenetically related virus. Here we obtained the complex structure of the RaTG13 receptor binding domain (RBD) with human ACE2 (hACE2) and evaluated binding of RaTG13 RBD to 24 additional ACE2 orthologs. By substituting residues in the RaTG13 RBD with their counterparts in the SARS-CoV-2 RBD, we found that residue 501, the major position found in variants of concern (VOCs) 501Y.V1/V2/V3, plays a key role in determining the potential host range of RaTG13. We also found that SARS-CoV-2 could induce strong cross-reactive antibodies to RaTG13 and identified a SARS-CoV-2 monoclonal antibody (mAb), CB6, that could cross-neutralize RaTG13 pseudovirus. These results elucidate the receptor binding and host adaption mechanisms of RaTG13 and emphasize the importance of continuous surveillance of coronaviruses (CoVs) carried by animal reservoirs to prevent another spillover of CoVs.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Binding Sites/physiology , COVID-19/metabolism , Chiroptera/virology , SARS-CoV-2/pathogenicity , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , COVID-19/immunology , Chiroptera/immunology , Chiroptera/metabolism , Host Specificity/immunology , Humans , Phylogeny , Protein Binding/physiology , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Sequence Alignment
13.
EMBO J ; 40(16): e107786, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1239217

ABSTRACT

Pangolins have been suggested as potential reservoir of zoonotic viruses, including SARS-CoV-2 causing the global COVID-19 outbreak. Here, we study the binding of two SARS-CoV-2-like viruses isolated from pangolins, GX/P2V/2017 and GD/1/2019, to human angiotensin-converting enzyme 2 (hACE2), the receptor of SARS-CoV-2. We find that the spike protein receptor-binding domain (RBD) of pangolin CoVs binds to hACE2 as efficiently as the SARS-CoV-2 RBD in vitro. Furthermore, incorporation of pangolin CoV RBDs allows entry of pseudotyped VSV particles into hACE2-expressing cells. A screen for binding of pangolin CoV RBDs to ACE2 orthologs from various species suggests a broader host range than that of SARS-CoV-2. Additionally, cryo-EM structures of GX/P2V/2017 and GD/1/2019 RBDs in complex with hACE2 show their molecular binding in modes similar to SARS-CoV-2 RBD. Introducing the Q498H substitution found in pangolin CoVs into the SARS-CoV-2 RBD expands its binding capacity to ACE2 homologs of mouse, rat, and European hedgehog. These findings suggest that these two pangolin CoVs may infect humans, highlighting the necessity of further surveillance of pangolin CoVs.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Betacoronavirus/physiology , Pangolins/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/chemistry , Animals , Binding Sites , HEK293 Cells , Hedgehogs/virology , Host Specificity , Humans , Mice , Models, Molecular , Phylogeny , Protein Binding , Protein Conformation , Rats , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL