Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell Host Microbe ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2068781

ABSTRACT

SARS-CoV-2 spread in humans results in continuous emergence of new variants, highlighting the need for vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation-patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x) that contains key regions and residues across multiple SAR-CoV-2 variants. STFK1628x demonstrated high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine composed of STFK and STFK1628x elicited high titers of broad-spectrum neutralizing antibodies to 19 circulating SARS-CoV-2 variants, including Omicron sublineages BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, and BA.4/5. Furthermore, this vaccine conferred robust protection against intranasal challenges by either SARS-CoV-2 ancestral strain or immune-evasive Beta and Omicron BA.1. Strikingly, vaccination with the bivalent vaccine in hamsters effectively blocked within-cage virus transmission of ancestral SARS-CoV-2, Beta variant, and Omicron BA.1 to unvaccinated sentinels. Thus, our study provided insight and antigen candidates for the development of next-generation COVID-19 vaccines.

2.
Vaccine ; 40(47): 6839-6848, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2042193

ABSTRACT

The ongoing coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drastically changed our way of life and continues to have an unmitigated socioeconomic impact across the globe. Research into potential vaccine design and production is focused on the spike (S) protein of the virus, which is critical for virus entry into host cells. Yet, whether the degree of glycosylation in the S protein is associated with vaccine efficacy remains unclear. Here, we first optimized the expression of the S protein in mammalian cells. While we found no significant discrepancy in purity, homogeneity, or receptor binding ability among S proteins derived from 293F cells (referred to as 293F S-2P), 293S GnTI- cells (defective in N-acetylglucosaminyl transferase I enzyme; 293S S-2P), or TN-5B1-4 insect cells (Bac S-2P), there was significant variation in the glycosylation patterns and thermal stability of the proteins. Compared with the partially glycosylated 293S S-2P or Bac S-2P, the fully glycosylated 293F S-2P exhibited higher binding reactivity to convalescent sera. In addition, 293F S-2P induced higher IgG and neutralizing antibody titres than 293S or Bac S-2P in mice. Furthermore, a prime-boost-boost regimen, using a combined immunization of S-2P proteins with various degrees of glycosylation, elicited a more robust neutralizing antibody response than a single S-2P alone. Collectively, this study provides insight into ways to design a more effective SARS-CoV-2 immunogen.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Mice , Animals , SARS-CoV-2 , Glycosylation , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Mammals/metabolism
3.
J Nanobiotechnology ; 20(1): 411, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2029712

ABSTRACT

The major challenge to controlling the COVID pandemic is the rapid mutation rate of the SARS-CoV-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is essential to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-CoV-2 variants. Here, we report a synthetic nanobody (named C5G2) obtained by phage display and subsequent antibody engineering. C5G2 has a single-digit nanomolar binding affinity to the RBD domain and inhibits its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assays indicated that monovalent C5G2 could protect the cells from infection with SARS-CoV-2 wild-type virus and most of the viruses of concern, i.e., Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against Omicron BA.1 among all the variants, with an IC50 of 4.9 ng/mL. The cryo-EM structure of C5G2 in complex with the spike trimer showed that C5G2 binds to RBD mainly through its CDR3 at a conserved region that does not overlap with the ACE2 binding surface. Additionally, C5G2 binds simultaneously to the neighboring NTD domain of the spike trimer through the same CDR3 loop, which may further increase its potency against viral infection. Third, the steric hindrance caused by FR2 of C5G2 could inhibit the binding of ACE2 to RBD as well. Thus, this triple-function nanobody may serve as an effective drug for prophylaxis and therapy against Omicron as well as future variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19 , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
4.
Proc Natl Acad Sci U S A ; 119(34): e2204256119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1991767

ABSTRACT

Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epitopes , SARS Virus , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Conserved Sequence , Cricetinae , Cryoelectron Microscopy , Epitopes/immunology , Humans , Mice , Neutralization Tests , SARS Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
5.
Front Microbiol ; 13: 854630, 2022.
Article in English | MEDLINE | ID: covidwho-1952414

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented public health crisis worldwide. Although several vaccines are available, the global supply of vaccines, particularly within developing countries, is inadequate, and this necessitates a need for the development of less expensive, accessible vaccine options. To this end, here, we used the Escherichia coli expression system to produce a recombinant fusion protein comprising the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; residues 319-541) and the fragment A domain of Cross-Reacting Material 197 (CRM197); hereafter, CRMA-RBD. We show that this CRMA-RBD fusion protein has excellent physicochemical properties and strong reactivity with COVID-19 convalescent sera and representative neutralizing antibodies (nAbs). Furthermore, compared with the use of a traditional aluminum adjuvant, we find that combining the CRMA-RBD protein with a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH-002C-Ac) leads to stronger humoral immune responses in mice, with 4-log neutralizing antibody titers. Overall, our study highlights the value of this E. coli-expressed fusion protein as an alternative vaccine candidate strategy against COVID-19.

7.
Cell Rep ; 39(8): 110862, 2022 05 24.
Article in English | MEDLINE | ID: covidwho-1821171

ABSTRACT

The rapidly spreading Omicron variant is highly resistant to vaccines, convalescent sera, and neutralizing antibodies (nAbs), highlighting the urgent need for potent therapeutic nAbs. Here, a panel of human nAbs from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent patients show diverse neutralization against Omicron, of which XMA01 and XMA04 maintain nanomolar affinities and excellent neutralization (half maximal inhibitory concentration [IC50]: ∼20 ng/mL). nAb XMA09 shows weak but unattenuated neutralization against all variants of concern (VOCs) as well as SARS-CoV. Structural analysis reveals that the above three antibodies could synergistically bind to the receptor-binding domains (RBDs) of both wild-type and Omicron spikes and defines the critical determinants for nAb-mediated broad neutralizations. Three nAbs confer synergistic neutralization against Omicron, resulting from the inter-antibody interaction between XMA04 and XMA01(or XMA09). Furthermore, the XMA01/XMA04 cocktail provides synergistic protection against Beta and Omicron variant infections in hamsters. In summary, our results provide insights for the rational design of antibody cocktail therapeutics or universal vaccines against Omicron.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Cricetinae , Humans , Immunization, Passive , SARS-CoV-2
8.
Nat Commun ; 12(1): 5652, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440473

ABSTRACT

The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses' receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/isolation & purification , Broadly Neutralizing Antibodies/metabolism , CHO Cells , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Epitopes/immunology , HEK293 Cells , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Pandemics/prevention & control , Protein Multimerization , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
9.
Sci Transl Med ; 13(606)2021 08 11.
Article in English | MEDLINE | ID: covidwho-1319371

ABSTRACT

Multiple safe and effective vaccines that elicit immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary to respond to the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a protein subunit vaccine composed of spike ectodomain protein (StriFK) plus a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH002C). StriFK-FH002C generated substantially higher neutralizing antibody titers in mice, hamsters, and cynomolgus monkeys than those observed in plasma isolated from COVID-19 convalescent individuals. StriFK-FH002C also induced both TH1- and TH2-polarized helper T cell responses in mice. In hamsters, StriFK-FH002C immunization protected animals against SARS-CoV-2 challenge, as shown by the absence of virus-induced weight loss, fewer symptoms of disease, and reduced lung pathology. Vaccination of hamsters with StriFK-FH002C also reduced within-cage virus transmission to unvaccinated, cohoused hamsters. In summary, StriFK-FH002C represents an effective, protein subunit-based SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Cricetinae , Humans , Mice , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
10.
ACS Nano ; 15(2): 2738-2752, 2021 02 23.
Article in English | MEDLINE | ID: covidwho-1036015

ABSTRACT

The coronavirus disease pandemic of 2019 (COVID-19) caused by the novel SARS-CoV-2 coronavirus resulted in economic losses and threatened human health worldwide. The pandemic highlights an urgent need for a stable, easily produced, and effective vaccine. SARS-CoV-2 uses the spike protein receptor-binding domain (RBD) to bind its cognate receptor, angiotensin-converting enzyme 2 (ACE2), and initiate membrane fusion. Thus, the RBD is an ideal target for vaccine development. In this study, we designed three different RBD-conjugated nanoparticle vaccine candidates, namely, RBD-Ferritin (24-mer), RBD-mi3 (60-mer), and RBD-I53-50 (120-mer), via covalent conjugation using the SpyTag-SpyCatcher system. When mice were immunized with the RBD-conjugated nanoparticles (NPs) in conjunction with the AddaVax or Sigma Adjuvant System, the resulting antisera exhibited 8- to 120-fold greater neutralizing activity against both a pseudovirus and the authentic virus than those of mice immunized with monomeric RBD. Most importantly, sera from mice immunized with RBD-conjugated NPs more efficiently blocked the binding of RBD to ACE2 in vitro, further corroborating the promising immunization effect. Additionally, the vaccine has distinct advantages in terms of a relatively simple scale-up and flexible assembly. These results illustrate that the SARS-CoV-2 RBD-conjugated nanoparticles developed in this study are a competitive vaccine candidate and that the carrier nanoparticles could be adopted as a universal platform for a future vaccine development.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Nanoparticles/therapeutic use , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/metabolism , COVID-19 Vaccines/pharmacology , Chlorocebus aethiops , Female , HEK293 Cells , Host-Pathogen Interactions , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
11.
Antib Ther ; 3(4): 285-299, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1010311

ABSTRACT

The rapid emergence of Coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2) as a pandemic that presents an urgent human health crisis. Many SARS-CoV-2 neutralizing antibodies (NAbs) were developed with efficient therapeutic potential. NAbs-based therapeutics against SARS-CoV-2 are being expedited to preclinical and clinical studies with two antibody drugs, LY3819253 (LY-CoV555) and REGN-COV2 (REGN10933 and REGN10987), approved by the US Food and Drug Administration for emergency use authorization for treating COVID-19. In this review, we provide a systemic overview of SARS-CoV-2 specific or cross-reactive NAbs and discuss their structures, functions and neutralization mechanisms. We provide insight into how these NAbs specific recognize the spike protein of SARS-CoV-2 or cross-react to other CoVs. We also summarize the challenges of NAbs therapeutics such as antibody-dependent enhancement and viral escape mutations. Such evidence is urgently needed to the development of antibody therapeutic interventions that are likely required to reduce the global burden of COVID-19.

12.
Small Methods ; 5(2): 2001031, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-986422

ABSTRACT

The ongoing corona virus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, a genetically engineered sensor of fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process is developed. In ACE2-expressing cells, it is found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.

13.
Emerg Microbes Infect ; 9(1): 2076-2090, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-913103

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic was the result of the rapid transmission of a highly pathogenic coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which there is no efficacious vaccine or therapeutic. Toward the development of a vaccine, here we expressed and evaluated as potential candidates four versions of the spike (S) protein using an insect cell expression system: receptor binding domain (RBD), S1 subunit, the wild-type S ectodomain (S-WT), and the prefusion trimer-stabilized form (S-2P). We showed that RBD appears as a monomer in solution, whereas S1, S-WT, and S-2P associate as homotrimers with substantial glycosylation. Cryo-electron microscopy analyses suggested that S-2P assumes an identical trimer conformation as the similarly engineered S protein expressed in 293 mammalian cells but with reduced glycosylation. Overall, the four proteins confer excellent antigenicity with convalescent COVID-19 patient sera in enzyme-linked immunosorbent assay (ELISA), yet show distinct reactivities in immunoblotting. RBD, S-WT and S-2P, but not S1, induce high neutralization titres (>3-log) in mice after a three-round immunization regimen. The high immunogenicity of S-2P could be maintained at the lowest dose (1 µg) with the inclusion of an aluminium adjuvant. Higher doses (20 µg) of S-2P can elicit high neutralization titres in non-human primates that exceed 40-times the mean titres measured in convalescent COVID-19 subjects. Our results suggest that the prefusion trimer-stabilized SARS-CoV-2 S-protein from insect cells may offer a potential candidate strategy for the development of a recombinant COVID-19 vaccine.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 , COVID-19 Vaccines , Cell Line , Coronavirus Infections/immunology , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Humans , Macaca fascicularis , Mice , Mice, Inbred BALB C , Neutralization Tests , Peptidyl-Dipeptidase A/metabolism , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2 , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Vaccination , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL