Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Public Health ; 9: 738179, 2021.
Article in English | MEDLINE | ID: covidwho-1775885

ABSTRACT

Background: It is important that physicians be aware of LH. We designed a questionnaire to determine physician awareness, knowledge, and behaviors regarding LH in clinical practice. Participants: A total of 499 questionnaires were completed by physicians in hospitals from 13 cities in Jiangsu Province, China. Key Results: Compared with physicians at tertiary hospitals, significantly fewer physicians at primary hospitals reported awareness of LH and its screening methods. The proportion of resident physicians aware of LH was significantly lower than the proportion of senior physicians. The proportion of physicians who could identify all LH risk factors among the low-GDP group was significantly higher than the high-GDP group. Only 38.7% of doctors could successfully identify all the hazards associated with LH, but more doctors in tertiary hospitals were able to do so compared to those in secondary and primary hospitals. Compared with tertiary hospitals, the proportions of primary and secondary hospitals with management processes were significantly lower. The proportion of doctors who educated patients regarding LH prevention and treatment in primary hospitals was markedly lower than in tertiary hospitals. Conclusions: Overall, physicians have an inadequate understanding of LH, especially in primary hospitals.


Subject(s)
Lipodystrophy , Physicians , Hospitals , Humans , Risk Factors , Surveys and Questionnaires
2.
Sens Actuators B Chem ; 351: 130897, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1458630

ABSTRACT

The rapid and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the early stage of virus infection can effectively prevent the spread of the virus and control the epidemic. Here, a colorimetric and fluorescent dual-functional lateral flow immunoassay (LFIA) biosensor was developed for the rapid and sensitive detection of spike 1 (S1) protein of SARS-CoV-2. A novel dual-functional immune label was fabricated by coating a single-layer shell formed by mixing 20 nm Au nanoparticles (Au NPs) and quantum dots (QDs) on SiO2 core to produce strong colorimetric and fluorescence signals and ensure good monodispersity and high stability. The colorimetric signal was used for visual detection and rapid screening of suspected SARS-CoV-2 infection on sites. The fluorescence signal was utilized for sensitive and quantitative detection of virus infection at the early stage. The detection limits of detecting S1 protein via colorimetric and fluorescence functions of the biosensor were 1 and 0.033 ng/mL, respectively. Furthermore, we evaluated the performance of the biosensor for analyzing real samples. The novel biosensor developed herein had good repeatability, specificity and accuracy, which showed great potential as a tool for rapidly detecting SARS-CoV-2.

3.
ACS Appl Mater Interfaces ; 13(34): 40342-40353, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1366784

ABSTRACT

Sensitive point-of-care methods for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in clinical specimens are urgently needed to achieve rapid screening of viral infection. We developed a magnetic quantum dot-based dual-mode lateral flow immunoassay (LFIA) biosensor for the high-sensitivity simultaneous detection of SARS-CoV-2 spike (S) and nucleocapsid protein (NP) antigens, which is beneficial for improving the detection accuracy and efficiency of SARS-CoV-2 infection in the point-of-care testing area. A high-performance magnetic quantum dot with a triple-QD shell (MagTQD) nanotag was first fabricated and integrated into the LFIA system to provide superior fluorescence signals, enrichment ability, and detectability for S/NP antigen testing. Two detection modes were provided by the proposed MagTQD-LFIA. The direct mode was used for rapid screening or urgent detection of suspected samples within 10 min, and the enrichment mode was used for the highly sensitive and quantitative analysis of SARS-CoV-2 antigens in biological samples without the interference of the "hook effect." The simultaneous detection of SARS-CoV-2 S/NP antigens was conducted in one LFIA strip, and the detection limits for two antigens under direct and enrichment modes were 1 and 0.5 pg/mL, respectively. The MagTQD-LFIA showed high accuracy, specificity, and stability in saliva and nasal swab samples and is an efficient tool with flexibility to meet the testing requirements for SARS-CoV-2 antigens in various situations.


Subject(s)
Antigens, Viral/analysis , Biosensing Techniques/methods , Coronavirus Nucleocapsid Proteins/analysis , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Coronavirus Nucleocapsid Proteins/immunology , Fluorescence , Fluorescent Dyes/chemistry , Humans , Immunoassay/methods , Limit of Detection , Magnetite Nanoparticles/chemistry , Nasopharynx/virology , Phosphoproteins/analysis , Phosphoproteins/immunology , Quantum Dots/chemistry , Saliva/virology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
4.
Sens Actuators B Chem ; 345: 130372, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1294238

ABSTRACT

Rapid and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (FluA) antigens in the early stages of virus infection is the key to control the epidemic spread. Here, we developed a two-channel fluorescent immunochromatographic assay (ICA) for ultrasensitive and simultaneous qualification of the two viruses in biological samples. A high-performance quantum dot nanobead (QB) was fabricated by adsorption of multilayers of dense quantum dots (QDs) onto the SiO2 surface and used as the highly luminescent label of the ICA system to ensure the high-sensitivity and stability of the assay. The combination of monodispersed SiO2 core (∼180 nm) and numerous carboxylated QDs formed a hierarchical shell, which ensured that the QBs possessed excellent stability, superior fluorescence signal, and convenient surface functionalization. The developed ICA biosensor achieved simultaneous detection of SARS-CoV-2 and FluA in one test within 15 min, with detection limits reaching 5 pg/mL for SARS-CoV-2 antigen and 50 pfu/mL for FluA H1N1. Moreover, our method showed high accuracy and specificity in throat swab samples with two orders of magnitude improvement in sensitivity compared with traditional AuNP-based ICA method. Hence, the proposed method is a promising and convenient tool for detection of respiratory viruses.

SELECTION OF CITATIONS
SEARCH DETAIL