Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Virol ; 96(9): e0003822, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1788914

ABSTRACT

Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.


Subject(s)
COVID-19 , Lung , Neutrophils , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Lung/pathology , Lung/virology , Lymphopenia/virology , Mice , Neutrophils/immunology , SARS-CoV-2 , Spleen/pathology , Spleen/virology
2.
Signal Transduct Target Ther ; 7(1): 83, 2022 03 11.
Article in English | MEDLINE | ID: covidwho-1740428

ABSTRACT

SARS-CoV-2 induced marked lymphopenia in severe patients with COVID-19. However, whether lymphocytes are targets of viral infection is yet to be determined, although SARS-CoV-2 RNA or antigen has been identified in T cells from patients. Here, we confirmed that SARS-CoV-2 viral antigen could be detected in patient peripheral blood cells (PBCs) or postmortem lung T cells, and the infectious virus could also be detected from viral antigen-positive PBCs. We next prove that SARS-CoV-2 infects T lymphocytes, preferably activated CD4 + T cells in vitro. Upon infection, viral RNA, subgenomic RNA, viral protein or viral particle can be detected in the T cells. Furthermore, we show that the infection is spike-ACE2/TMPRSS2-independent through using ACE2 knockdown or receptor blocking experiments. Next, we demonstrate that viral antigen-positive T cells from patient undergone pronounced apoptosis. In vitro infection of T cells induced cell death that is likely in mitochondria ROS-HIF-1a-dependent pathways. Finally, we demonstrated that LFA-1, the protein exclusively expresses in multiple leukocytes, is more likely the entry molecule that mediated SARS-CoV-2 infection in T cells, compared to a list of other known receptors. Collectively, this work confirmed a SARS-CoV-2 infection of T cells, in a spike-ACE2-independent manner, which shed novel insights into the underlying mechanisms of SARS-CoV-2-induced lymphopenia in COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , T-Lymphocytes/metabolism , Animals , Caco-2 Cells , Chlorocebus aethiops , Humans , Vero Cells
3.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572660

ABSTRACT

Patients with COVID-19 generally raise antibodies against SARS-CoV-2 following infection, and the antibody level is positively correlated to the severity of disease. Whether the viral antibodies exacerbate COVID-19 through antibody-dependent enhancement (ADE) is still not fully understood. Here, we conducted in vitro assessment of whether convalescent serum enhanced SARS-CoV-2 infection or induced excessive immune responses in immune cells. Our data revealed that SARS-CoV-2 infection of primary B cells, macrophages and monocytes, which express variable levels of FcγR, could be enhanced by convalescent serum from COVID-19 patients. We also determined the factors associated with ADE, and found which showed a time-dependent but not viral-dose dependent manner. Furthermore, the ADE effect is not associated with the neutralizing titer or RBD antibody level when testing serum samples collected from different patients. However, it is higher in a medium level than low or high dilutions in a given sample that showed ADE effect, which is similar to dengue. Finally, we demonstrated more viral genes or dysregulated host immune gene expression under ADE conditions compared to the no-serum infection group. Collectively, our study provides insight into the understanding of an association of high viral antibody titer and severe lung pathology in severe patients with COVID-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Leukocytes/virology , SARS-CoV-2/pathogenicity , COVID-19/immunology , Cells, Cultured , Gene Expression Profiling , Humans , Immune Sera/immunology , Leukocytes/metabolism , Receptors, IgG/metabolism , Virus Replication/immunology
5.
Emerg Microbes Infect ; 9(1): 2571-2577, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-944151

ABSTRACT

Following acute infection, individuals COVID-19 may still shed SARS-CoV-2 RNA. However, limited information is available regarding the active shedding period or whether infectious virus is also shed. Here, we monitored the clinical characteristics and virological features of 38 patients with COVID-19 (long-term carriers) who recovered from the acute disease, but still shed viral RNA for over 3 months. The median carrying history of the long-term carriers was 92 days after the first admission, and the longest carrying history was 118 days. Negative-positive viral RNA-shedding fluctuations were observed. Long-term carriers were mostly elderly people with a history of mild infection. Infectious SARS-CoV-2 was isolated from the sputum, where high level viral RNA was found. All nine full-length genomes of samples obtained in March-April 2020 matched early viral clades circulating in January-February 2020, suggesting that these patients persistently carried SARS-CoV-2 and were not re-infected. IgM and IgG antibodies and neutralizing-antibody profiles were similar between long-term carriers and recovered patients with similar disease courses. In summary, although patients with COVID-19 generated neutralizing antibodies, they may still shed infectious SARS-CoV-2 for over 3 months. These data imply that patients should be monitored after discharge to control future outbreaks.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Virus Shedding , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral/blood , Carrier State , Female , Genome, Viral , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , RNA, Viral/isolation & purification , Sputum/virology
7.
Emerg Microbes Infect ; 9(1): 386-389, 2020.
Article in English | MEDLINE | ID: covidwho-1080

ABSTRACT

In December 2019, a novel coronavirus (2019-nCoV) caused an outbreak in Wuhan, China, and soon spread to other parts of the world. It was believed that 2019-nCoV was transmitted through respiratory tract and then induced pneumonia, thus molecular diagnosis based on oral swabs was used for confirmation of this disease. Likewise, patient will be released upon two times of negative detection from oral swabs. However, many coronaviruses can also be transmitted through oral-fecal route by infecting intestines. Whether 2019-nCoV infected patients also carry virus in other organs like intestine need to be tested. We conducted investigation on patients in a local hospital who were infected with this virus. We found the presence of 2019-nCoV in anal swabs and blood as well, and more anal swab positives than oral swab positives in a later stage of infection, suggesting shedding and thereby transmitted through oral-fecal route. We also showed serology test can improve detection positive rate thus should be used in future epidemiology. Our report provides a cautionary warning that 2019-nCoV may be shed through multiple routes.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Feces/virology , Pneumonia, Viral/transmission , Virus Shedding , COVID-19 , China , Coronavirus Infections/blood , Humans , Pneumonia, Viral/blood , SARS-CoV-2
8.
Nature ; 579(7798): 270-273, 2020 03.
Article in English | MEDLINE | ID: covidwho-246

ABSTRACT

Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Chiroptera/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/blood , Betacoronavirus/metabolism , Betacoronavirus/ultrastructure , COVID-19 , Cell Line , China/epidemiology , Chlorocebus aethiops , Female , Genome, Viral/genetics , Humans , Male , Peptidyl-Dipeptidase A/metabolism , Phylogeny , SARS Virus/classification , SARS Virus/genetics , SARS-CoV-2 , Sequence Homology, Nucleic Acid , Severe Acute Respiratory Syndrome , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL