Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Lancet Microbe ; 3(5): e348-e356, 2022 05.
Article in English | MEDLINE | ID: covidwho-1984300

ABSTRACT

Background: The memory immune response is crucial for preventing reinfection or reducing disease severity. However, the robustness and functionality of the humoral and T-cell response to SARS-CoV-2 remains unknown 12 months after initial infection. The aim of this study is to investigate the durability and functionality of the humoral and T-cell response to the original SARS-CoV-2 strain and variants in recovered patients 12 months after infection. Methods: In this longitudinal cohort study, we recruited participants who had recovered from COVID-19 and who were discharged from the Wuhan Research Center for Communicable Disease Diagnosis and Treatment at the Chinese Academy of Medical Sciences, Wuhan, China, between Jan 7 and May 29, 2020. Patients received a follow-up visit between Dec 16, 2020, and Jan 27, 2021. We evaluated the presence of IgM, IgA, and IgG antibodies against the SARS-CoV-2 nucleoprotein, Spike protein, and the receptor-binding domain 12 months after initial infection, using ELISA. Neutralising antibodies against the original SARS-CoV-2 strain, and the D614G, beta (B.1.351), and delta (B.1.617.2) variants were analysed using a microneutralisation assay in a subset of plasma samples. We analysed the magnitude and breadth of the SARS-CoV-2-specific memory T-cell responses using the interferon γ (IFNγ) enzyme-linked immune absorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) assay. The antibody response and T-cell response (ie, IFN-γ, interleukin-2 [IL-2], and tumour necrosis factor α [TNFα]) were analysed by age and disease severity. Antibody titres were also analysed according to sequelae symptoms. Findings: We enrolled 1096 patients, including 289 (26·4%) patients with moderate initial disease, 734 (67·0%) with severe initial disease, and 73 (6·7%) with critical initial disease. Paired plasma samples were collected from 141 patients during the follow-up visits for the microneutralisation assay. PBMCs were collected from 92 of 141 individuals at the 12-month follow-up visit, of which 80 were analysed by ELISpot and 92 by ICS assay to detect the SARS-CoV-2-specific memory T-cell responses. N-IgG (899 [82·0%]), S-IgG (1043 [95·2%]), RBD-IgG (1032 [94·2%]), and neutralising (115 [81·6%] of 141) antibodies were detectable 12 months after initial infection in most individuals. Neutralising antibodies remained stable 6 and 12 months after initial infection in most individuals younger than 60 years. Multifunctional T-cell responses were detected for all SARS-CoV-2 viral proteins tested. There was no difference in the magnitude of T-cell responses or cytokine profiles in individuals with different symptom severity. Moreover, we evaluated both antibody and T-cell responses to the D614G, beta, and delta viral strains. The degree of reduced in-vitro neutralising antibody responses to the D614G and delta variants, but not to the beta variant, was associated with the neutralising antibody titres after SARS-CoV-2 infection. We also found poor neutralising antibody responses to the beta variant; 83 (72·2%) of 115 patients showed no response at all. Moreover, the neutralising antibody titre reduction of the recovered patient plasma against the delta variant was similar to that of the D614G variant and lower than that of the beta variant. By contrast, T-cell responses were cross-reactive to the beta variant in most individuals. Importantly, T-cell responses could be detected in all individuals who had lost the neutralising antibody response to SARS-CoV-2 12 months after the initial infection. Interpretation: SARS-CoV-2-specific neutralising antibody and T-cell responses were retained 12 months after initial infection. Neutralising antibodies to the D614G, beta, and delta viral strains were reduced compared with those for the original strain, and were diminished in general. Memory T-cell responses to the original strain were not disrupted by new variants. This study suggests that cross-reactive SARS-CoV-2-specific T-cell responses could be particularly important in the protection against severe disease caused by variants of concern whereas neutralising antibody responses seem to reduce over time. Funding: Chinese Academy of Medical Sciences, National Natural Science Foundation, and UK Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Cohort Studies , Cytokines , Humans , Immunoglobulin G , Longitudinal Studies , T-Lymphocytes
2.
J Med Virol ; 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-1976742

ABSTRACT

BACKGROUND: We evaluated and compared humoral immune responses after inactivated COVID-19 vaccination among naïve individuals, asymptomatically infected individuals, and recovered patients with varying severity. METHODS: In this multicenter, prospective cohort study, blood samples from 666 participants were collected before and after two doses of inactivated COVID-19 vaccination. RESULTS: Among 392 SARS-CoV-2-naïve individuals, the seroconversion rate increased significantly from 51.8% (median anti-spike protein pan-immunoglobulins [S-Igs] titer:0.8 U/mL) after the first dose to 96% (median S-Igs titer:79.5 U/mL) after the second dose. 32% of naïve individuals had detectable neutralizing antibodies (NAbs) against the original strain, but all of them lost neutralizing activity against the Omicron variant. In 274 individuals with natural infection, humoral immunity was significantly improved after a single vaccine dose, with median S-Igs titers of 757.8U/mL, 1247.0U/mL, 1280.0U/mL, and 2367.0U/mL for asymptomatic infections, mild cases, moderate cases, and severe/critical cases, respectively. NAb titers also improved significantly. However, the second dose did not substantially increase antibody levels. CONCLUSIONS: Although a booster dose is needed for those without infection, our findings indicate that recovered patients should receive only a single dose of the vaccine, regardless of the clinical severity, until there is sufficient evidence to confirm the benefits of a second dose. This article is protected by copyright. All rights reserved.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311704

ABSTRACT

Background: Seasonal human coronaviruses (HCoVs) including HCoV-229E, -OC43, -NL63 and -HKU1 are widely spreading in global human populations. However, the relevance of humoral response against seasonal HCoVs to COVID-19 pathogenesis is elusive.Methods: We profiled the temporal changes of IgG antibodies against spike (S;S-IgG) proteins of SARS-CoV-2 and seasonal HCoVs in 838 plasma samples collected from 344 COVID-19 patients. We tested the antigenic cross-reactivity of S protein between SARS-CoV-2 and seasonal HCoVs and evaluated the correlations between HCoV-OC43 S-IgG antibody and disease severity in COVID-19 patients.Findings: SARS-CoV-2 S-IgG titers mounted until days 22–28, whereas HCoV-OC43 antibody titers increased until days 15–21 and then plateaued until day 46. However, IgG antibody titers against HCoV-NL63, -229E, and -HKU1 showed no significant increasing. A two-way cross-reactivity was identified between SARS-CoV-2 and HCoV-OC43. Neutralizing antibodies against SARS-CoV-2 were not detected in healthy controls who were positive for HCoV-OC43 S-IgG. HCoV-OC43 S-IgG titers were significantly higher in patients with severe disease than those in mild/moderate patients at days 1–21 post symptom onset (PSO). Higher levels of HCoV-OC43 S-IgG were also observed in patients requiring mechanical ventilation and the elderly. At days 1–10 PSO, HCoV-OC43 S-IgG titers correlated to disease severity in all age groups, and to fatality in over 60-year group.Interpretation: Our data indicate that there exist a humoral cross-reactive response between HCoV-OC43 and SARS-CoV-2. The cross-reactive HCoV-OC43 S-IgG antibody is not protective against SARS-CoV-2, but may be a risk factor for the severity and adverse outcome of COVID-19.Funding Statement: This study was funded in part by the National Major Science & Technology Project for Control and Prevention of Major Infectious Diseases in China (2017ZX10204401, 2018ZX10734404), Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2016-I2M-1–014, 2018-I2M-1-003, 2020-I2M-1-001, 2020-I2M-CoV19-005), Natural Science Foundation of China (82041011/H0104), and National Key R&D Program of China (2020YFA0707600). Declaration of Interests: The authors declare no competing interests.Ethics Approval Statement: This study was approved by the Ethical Review Board of Wuhan Jinyintan Hospital, Infectious Disease Hospital of Heilongjiang Province (Harbin), and Institute of Pathogen Biology, Chinese Academy of Medical Sciences. Written informed consent was obtained from each healthy volunteer and COVID-19 patients in cohort 4. Written informed consents from the remaining patients were waived in light of the emerging infectious disease of high public health relevance.

4.
The Lancet ; 397(10270):220-232, 2021.
Article in English | APA PsycInfo | ID: covidwho-1164655

ABSTRACT

Presents a study which aims to examine consequences of COVID-19 in patients discharged from hospital for 6-months. This ambidirectional cohort study was done at Jin Yin-tan Hospital, the first designated hospital for patients with COVID-19 in Wuhan, Hubei, China. Clinical data for acute phase were retrieved from electronic medical records, including demographic characteristics, clinical characteristics, laboratory test results;and treatment. The disease severity was characterized by the highest seven-category scale during the hospital stay. Data were managed using REDCap electronic data capture tools in order to minimize missing inputs and allow for real-time data validation and quality control. Follow-up consultations were done in the outpatient clinic of Jin Yin-tan Hospital. All participants were interviewed face-to-face by trained physicians and asked to complete a series of questionnaires. For the symptom questionnaire, participants were asked to report newly occurring and persistent symptoms, or any symptoms worse than before COVID-19 development. A total of 2469 patients with COVID-19 were discharged from Jin Yin-tan Hospital between Jan 7, and May 29, 2020, and the follow-up study was done from June 16, 2020, to Sept 3, 2020. This is the largest cohort study with the longest follow-up duration assessing the health consequences of adult patients discharged from hospital recovering from COVID-19. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

5.
Lancet ; 397(10279): 1075-1084, 2021 03 20.
Article in English | MEDLINE | ID: covidwho-1142326

ABSTRACT

BACKGROUND: Wuhan was the epicentre of the COVID-19 outbreak in China. We aimed to determine the seroprevalence and kinetics of anti-SARS-CoV-2 antibodies at population level in Wuhan to inform the development of vaccination strategies. METHODS: In this longitudinal cross-sectional study, we used a multistage, population-stratified, cluster random sampling method to systematically select 100 communities from the 13 districts of Wuhan. Households were systematically selected from each community and all family members were invited to community health-care centres to participate. Eligible individuals were those who had lived in Wuhan for at least 14 days since Dec 1, 2019. All eligible participants who consented to participate completed a standardised electronic questionnaire of demographic and clinical questions and self-reported any symptoms associated with COVID-19 or previous diagnosis of COVID-19. A venous blood sample was taken for immunological testing on April 14-15, 2020. Blood samples were tested for the presence of pan-immunoglobulins, IgM, IgA, and IgG antibodies against SARS-CoV-2 nucleocapsid protein and neutralising antibodies were assessed. We did two successive follow-ups between June 11 and June 13, and between Oct 9 and Dec 5, 2020, at which blood samples were taken. FINDINGS: Of 4600 households randomly selected, 3599 families (78·2%) with 9702 individuals attended the baseline visit. 9542 individuals from 3556 families had sufficient samples for analyses. 532 (5·6%) of 9542 participants were positive for pan-immunoglobulins against SARS-CoV-2, with a baseline adjusted seroprevalence of 6·92% (95% CI 6·41-7·43) in the population. 437 (82·1%) of 532 participants who were positive for pan-immunoglobulins were asymptomatic. 69 (13·0%) of 532 individuals were positive for IgM antibodies, 84 (15·8%) were positive for IgA antibodies, 532 (100%) were positive for IgG antibodies, and 212 (39·8%) were positive for neutralising antibodies at baseline. The proportion of individuals who were positive for pan-immunoglobulins who had neutralising antibodies in April remained stable for the two follow-up visits (162 [44·6%] of 363 in June, 2020, and 187 [41·2%] of 454 in October-December, 2020). On the basis of data from 335 individuals who attended all three follow-up visits and who were positive for pan-immunoglobulins, neutralising antibody levels did not significantly decrease over the study period (median 1/5·6 [IQR 1/2·0 to 1/14·0] at baseline vs 1/5·6 [1/4·0 to 1/11·2] at first follow-up [p=1·0] and 1/6·3 [1/2·0 to 1/12·6] at second follow-up [p=0·29]). However, neutralising antibody titres were lower in asymptomatic individuals than in confirmed cases and symptomatic individuals. Although titres of IgG decreased over time, the proportion of individuals who had IgG antibodies did not decrease substantially (from 30 [100%] of 30 at baseline to 26 [89·7%] of 29 at second follow-up among confirmed cases, 65 [100%] of 65 at baseline to 58 [92·1%] of 63 at second follow-up among symptomatic individuals, and 437 [100%] of 437 at baseline to 329 [90·9%] of 362 at second follow-up among asymptomatic individuals). INTERPRETATION: 6·92% of a cross-sectional sample of the population of Wuhan developed antibodies against SARS-CoV-2, with 39·8% of this population seroconverting to have neutralising antibodies. Our durability data on humoral responses indicate that mass vaccination is needed to effect herd protection to prevent the resurgence of the epidemic. FUNDING: Chinese Academy of Medical Sciences & Peking Union Medical College, National Natural Science Foundation, and Chinese Ministry of Science and Technology. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , China/epidemiology , Coronavirus Nucleocapsid Proteins/immunology , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Immunity, Herd/immunology , Immunity, Humoral , Infant , Infant, Newborn , Longitudinal Studies , Male , Mass Vaccination/organization & administration , Middle Aged , Seroepidemiologic Studies , Young Adult
6.
Emerg Microbes Infect ; 10(1): 664-676, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1139855

ABSTRACT

Seasonal human coronaviruses (HCoVs) including HCoV-229E, -OC43, -NL63, and -HKU1 widely spread in global human populations. However, the relevance of humoral response against seasonal HCoVs to COVID-19 pathogenesis is elusive. In this study, we profiled the temporal changes of IgG antibody against spike proteins (S-IgG) of SARS-CoV-2 and seasonal HCoVs in 838 plasma samples collected from 344 COVID-19 patients. We tested the antigenic cross-reactivities of S protein between SARS-CoV-2 and seasonal HCoVs and evaluated the correlations between the levels of HCoV-OC43 S-IgG and the disease severity in COVID-19 patients. We found that SARS-CoV-2 S-IgG titres mounted until days 22-28, whereas HCoV-OC43 antibody titres increased until days 15-21 and then plateaued until day 46. However, IgG titres against HCoV-NL63, -229E, and -HKU1 showed no significant increase. A two-way cross-reactivity was identified between SARS-CoV-2 and HCoV-OC43. Neutralizing antibodies against SARS-CoV-2 were not detectable in healthy controls who were positive for HCoV-OC43 S-IgG. HCoV-OC43 S-IgG titres were significantly higher in patients with severe disease than those in mild patients at days 1-21 post symptom onset (PSO). Higher levels of HCoV-OC43 S-IgG were also observed in patients requiring mechanical ventilation. At days 1-10 PSO, HCoV-OC43 S-IgG titres correlated to disease severity in the age group over 60. Our data indicate that there is a correlation between cross-reactive antibody against HCoV-OC43 spike protein and disease severity in COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronavirus OC43, Human/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/pathology , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Severity of Illness Index , Young Adult
7.
Lancet ; 397(10270): 220-232, 2021 01 16.
Article in English | MEDLINE | ID: covidwho-1065678

ABSTRACT

BACKGROUND: The long-term health consequences of COVID-19 remain largely unclear. The aim of this study was to describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity. METHODS: We did an ambidirectional cohort study of patients with confirmed COVID-19 who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7, 2020, and May 29, 2020. Patients who died before follow-up, patients for whom follow-up would be difficult because of psychotic disorders, dementia, or re-admission to hospital, those who were unable to move freely due to concomitant osteoarthropathy or immobile before or after discharge due to diseases such as stroke or pulmonary embolism, those who declined to participate, those who could not be contacted, and those living outside of Wuhan or in nursing or welfare homes were all excluded. All patients were interviewed with a series of questionnaires for evaluation of symptoms and health-related quality of life, underwent physical examinations and a 6-min walking test, and received blood tests. A stratified sampling procedure was used to sample patients according to their highest seven-category scale during their hospital stay as 3, 4, and 5-6, to receive pulmonary function test, high resolution CT of the chest, and ultrasonography. Enrolled patients who had participated in the Lopinavir Trial for Suppression of SARS-CoV-2 in China received severe acute respiratory syndrome coronavirus 2 antibody tests. Multivariable adjusted linear or logistic regression models were used to evaluate the association between disease severity and long-term health consequences. FINDINGS: In total, 1733 of 2469 discharged patients with COVID-19 were enrolled after 736 were excluded. Patients had a median age of 57·0 (IQR 47·0-65·0) years and 897 (52%) were men. The follow-up study was done from June 16, to Sept 3, 2020, and the median follow-up time after symptom onset was 186·0 (175·0-199·0) days. Fatigue or muscle weakness (63%, 1038 of 1655) and sleep difficulties (26%, 437 of 1655) were the most common symptoms. Anxiety or depression was reported among 23% (367 of 1617) of patients. The proportions of median 6-min walking distance less than the lower limit of the normal range were 24% for those at severity scale 3, 22% for severity scale 4, and 29% for severity scale 5-6. The corresponding proportions of patients with diffusion impairment were 22% for severity scale 3, 29% for scale 4, and 56% for scale 5-6, and median CT scores were 3·0 (IQR 2·0-5·0) for severity scale 3, 4·0 (3·0-5·0) for scale 4, and 5·0 (4·0-6·0) for scale 5-6. After multivariable adjustment, patients showed an odds ratio (OR) 1·61 (95% CI 0·80-3·25) for scale 4 versus scale 3 and 4·60 (1·85-11·48) for scale 5-6 versus scale 3 for diffusion impairment; OR 0·88 (0·66-1·17) for scale 4 versus scale 3 and OR 1·77 (1·05-2·97) for scale 5-6 versus scale 3 for anxiety or depression, and OR 0·74 (0·58-0·96) for scale 4 versus scale 3 and 2·69 (1·46-4·96) for scale 5-6 versus scale 3 for fatigue or muscle weakness. Of 94 patients with blood antibodies tested at follow-up, the seropositivity (96·2% vs 58·5%) and median titres (19·0 vs 10·0) of the neutralising antibodies were significantly lower compared with at the acute phase. 107 of 822 participants without acute kidney injury and with estimated glomerular filtration rate (eGFR) 90 mL/min per 1·73 m2 or more at acute phase had eGFR less than 90 mL/min per 1·73 m2 at follow-up. INTERPRETATION: At 6 months after acute infection, COVID-19 survivors were mainly troubled with fatigue or muscle weakness, sleep difficulties, and anxiety or depression. Patients who were more severely ill during their hospital stay had more severe impaired pulmonary diffusion capacities and abnormal chest imaging manifestations, and are the main target population for intervention of long-term recovery. FUNDING: National Natural Science Foundation of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, and Peking Union Medical College Foundation.


Subject(s)
COVID-19/complications , Quality of Life , Aged , COVID-19/epidemiology , COVID-19/psychology , COVID-19 Serological Testing/statistics & numerical data , China/epidemiology , Cohort Studies , Comorbidity , Fatigue/epidemiology , Fatigue/etiology , Female , Humans , Length of Stay/statistics & numerical data , Male , Middle Aged , Muscle Weakness/epidemiology , Muscle Weakness/etiology , Pandemics , SARS-CoV-2 , Severity of Illness Index , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/etiology , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL