Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
EClinicalMedicine ; 49: 101473, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867082

ABSTRACT

Background: The long-term prognosis of COVID-19 survivors remains poorly understood. It is evidenced that the lung is the main damaged organ in COVID-19 survivors, most notably in impairment of pulmonary diffusion function. Hence, we conducted a meta-analysis of the potential risk factors for impaired diffusing capacity for carbon monoxide (DLCO) in convalescent COVID-19 patients. Methods: We performed a systematic search of PubMed, Web of Science, Embase, and Ovid databases for relevant studies from inception until January 7, 2022, limited to papers involving human subjects. Studies were reviewed for methodological quality. Fix-effects and random-effects models were used to pool results. Heterogeneity was assessed using I2. The publication bias was assessed using the Egger's test. PROSPERO registration: CRD42021265377. Findings: A total of eighteen qualified articles were identified and included in the systematic review, and twelve studies were included in the meta-analysis. Our results showed that female (OR: 4.011; 95% CI: 2.928-5.495), altered chest computerized tomography (CT) (OR: 3.002; 95% CI: 1.319-6.835), age (OR: 1.018; 95% CI: 1.007-1.030), higher D-dimer levels (OR: 1.012; 95% CI: 1.001-1.023) and urea nitrogen (OR: 1.004;95% CI: 1.002-1.007) were identified as risk factors for impaired DLCO. Interpretation: Pulmonary diffusion capacity was the most common impaired lung function in recovered patients with COVID-19. Several risk factors, such as female, altered chest CT, older age, higher D-dimer levels and urea nitrogen are associated with impairment of DLCO. Raising awareness and implementing interventions for possible modifiable risk factors may be valuable for pulmonary rehabilitation. Funding: This work was financially supported by Emergency Key Program of Guangzhou Laboratory (EKPG21-29, EKPG21-31), Incubation Program of National Science Foundation for Distinguished Young Scholars by Guangzhou Medical University (GMU2020-207).

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335275

ABSTRACT

While SARS-CoV-2 pathogenesis has been intensively investigated, the host mechanisms of viral clearance and inflammation resolution are still elusive because of the ethical limitation of human studies based on COVID-19 convalescents. Here we infected Syrian hamsters by authentic SARS-CoV-2 and built an ideal model to simulate the natural recovery process of SARS-CoV-2 infection from severe pneumonia 1,2 . We developed and applied a spatial transcriptomic sequencing technique with subcellular resolution and tissue-scale extensibility, i.e. , Stereo-seq 3 , together with single-cell RNA sequencing (scRNA-seq), to the entire lung lobes of 45 hamsters and obtained an elaborate map of the pulmonary spatiotemporal changes from acute infection, severe pneumonia to the late viral clearance and inflammation resolution. While SARS-CoV-2 infection caused massive damages to the hamster lungs, including naïve T cell infection and deaths related to lymphopenia, we identified a group of monocyte-derived proliferating Slamf9 + Spp1 + macrophages, which were SARS-CoV-2 infection-inducible and cell death-resistant, recruiting neutrophils to clear viruses together. After viral clearance, the Slamf9 + Spp1 + macrophages differentiated into Trem2 + and Fbp1 + macrophages, both responsible for inflammation resolution and replenishment of alveolar macrophages. The existence of this specific macrophage subpopulation and its descendants were validated by RNAscope in hamsters, immunofluorescence in hACE2 mice, and public human autopsy scRNA-seq data of COVID-19 patients. The spatiotemporal landscape of SARS-CoV-2 infection in hamster lungs and the identification of Slamf9 + Spp1 + macrophages that is pivotal to viral clearance and inflammation resolution are important to better understand the critical molecular and cellular players of COVID-19 host defense and also develop potential interventions of COVID-19 immunopathology.

3.
Natl Sci Rev ; 9(4): nwac004, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1821757

ABSTRACT

The SARS-CoV-2 B.1.617.2 (Delta) variant flared up in late May in Guangzhou, China. Transmission characteristics of Delta variant were analysed for 153 confirmed cases and two complete transmission chains with seven generations were fully presented. A rapid transmission occurred in five generations within 10 days. The basic reproduction number (R0) was 3.60 (95% confidence interval: 2.50-5.30). After redefining the concept of close contact, the proportion of confirmed cases discovered from close contacts increased from 43% to 100%. With the usage of a yellow health code, the potential exposed individuals were self-motivated to take a nucleic acid test and regained public access with a negative testing result. Facing the massive requirement of screening, novel facilities like makeshift inflatable laboratories were promptly set up as a vital supplement and 17 cases were found, with 1 pre-symptomatic. The dynamic adjustment of these three interventions resulted in the decline of Rt from 5.00 to 1.00 within 9 days. By breaking the transmission chain and eliminating the transmission source through extending the scope of the close-contact tracing, health-code usage and mass testing, the Guangzhou Delta epidemic was effectively contained.

4.
Natl Sci Rev ; 9(3): nwac054, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1784379
5.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L712-L721, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1759484

ABSTRACT

Accumulating evidence has confirmed that chronic obstructive pulmonary disease (COPD) is a risk factor for development of severe pathological changes in the peripheral lungs of patients with COVID-19. However, the underlying molecular mechanisms remain unclear. Because bronchiolar club cells are crucial for maintaining small airway homeostasis, we sought to explore whether the altered susceptibility to SARS-CoV-2 infection of the club cells might have contributed to the severe COVID-19 pneumonia in COPD patients. Our investigation on the quantity and distribution patterns of angiotensin-converting enzyme 2 (ACE2) in airway epithelium via immunofluorescence staining revealed that the mean fluorescence intensity of the ACE2-positive epithelial cells was significantly higher in club cells than those in other epithelial cells (including ciliated cells, basal cells, goblet cells, neuroendocrine cells, and alveolar type 2 cells). Compared with nonsmokers, the median percentage of club cells in bronchiolar epithelium and ACE2-positive club cells was significantly higher in COPD patients. In vitro, SARS-CoV-2 infection (at a multiplicity of infection of 1.0) of primary small airway epithelial cells, cultured on air-liquid interface, confirmed a higher percentage of infected ACE2-positive club cells in COPD patients than in nonsmokers. Our findings have indicated the role of club cells in modulating the pathogenesis of SARS-CoV-2-related severe pneumonia and the poor clinical outcomes, which may help physicians to formulate a novel therapeutic strategy for COVID-19 patients with coexisting COPD.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Angiotensin-Converting Enzyme 2 , Epithelial Cells , Humans , Lung , Peptidyl-Dipeptidase A , SARS-CoV-2
6.
J Thorac Dis ; 14(2): 355-370, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1737501

ABSTRACT

Background: The current COVID-19 pandemic is posing a major challenge to public health on a global scale. While it is generally believed that severe COVID-19 results from over-expression of inflammatory mediators (i.e., a "cytokine storm"), it is still unclear whether and how co-infecting pathogens contribute to disease pathogenesis. To address this, we followed the entire course of the disease in cases with severe or critical COVID-19 to determine the presence and abundance of all potential pathogens present-the total "infectome"-and how they interact with the host immune system in the context of severe COVID-19. Methods: We examined one severe and three critical cases of COVID-19, as well as a set of healthy controls, with longitudinal samples (throat swab, whole blood, and serum) collected from each case. Total RNA sequencing (meta-transcriptomics) was performed to simultaneously investigate pathogen diversity and abundance, as well as host immune responses, in each sample. A Bio-Plex method was used to measure serum cytokine and chemokine levels. Results: Eight pathogens, SARS-CoV-2, Aspergillus fumigatus (A. fumigatus), Mycoplasma orale (M. orale), Myroides odoratus (M. odoratus), Acinetobacter baumannii (A. baumannii), Candida tropicalis, herpes simplex virus (HSV) and human cytomegalovirus (CMV), identified in patients with COVID-19 appeared at different stages of the disease. The dynamics of inflammatory mediators in serum and the respiratory tract were more strongly associated with the dynamics of the infectome compared with SARS-CoV-2 alone. Correlation analysis revealed that pulmonary injury was directly associated with cytokine levels, which in turn were associated with the proliferation of SARS-CoV-2 and co-infecting pathogens. Conclusions: For each patient, the cytokine storm that resulted in acute lung injury and death involved a dynamic and highly complex infectome, of which SARS-CoV-2 was a component. These results indicate the need for a precision medicine approach to investigate both the infection and host response as a standard means of infectious disease characterization.

7.
Am J Chin Med ; 50(2): 351-369, 2022.
Article in English | MEDLINE | ID: covidwho-1723921

ABSTRACT

The development of anti-COVID-19 drugs has become the top priority since the outbreak of the epidemic, and Traditional Chinese medicine plays an important role in reducing mortality. Here, hesperidin and its glycosylation product, glucosyl hesperidin were selected to determine their antiviral activity against SARS-CoV-2 due to their structural specificity as reported. To be specific, their binding ability with ACE2, M, S, RBD and N proteins were verified with both in silico and wet lab methods, i.e., molecular docking and binding affinity tests, including biolayer interferometry assay (BLI) and isothermal titration calorimetry assay (ITC). Moreover, systematic pharmacological analysis was conducted to reveal their pharmacological mechanism in treating COVID-19. Finally, their antiviral activity against SARS-CoV-2 was determined in vitro in a biosafety level 3 (BSL3) laboratory. The results demonstrated their outstanding binding affinity with ACE2, M, S and RBD proteins, while showed barely unobserved binding with N protein, indicating their key roles in influencing the invasion and early replication phase of SARS-CoV-2. In addition, both hesperidin and glucosyl hesperidin were shown to have a great impact on immune, inflammation and virus infection induced by COVID-19 according to the systematic pharmacological analysis. Moreover, the IC50s of hesperidin and glucosyl hesperidin against SARS-CoV-2 were further determined (51.5 [Formula: see text]M and 5.5 mM, respectively) with cell-based in vitro assay, suggesting their great anti-SARS-CoV-2 activity. All in all, present research was the first to verify the binding ability of hesperidin and glucosyl hesperidin with SARS-CoV-2 proteins with both in silico and wet-lab methods and proposed the possibility of applying hesperidin and glucosyl hesperidin to treat COVID-19.


Subject(s)
COVID-19 , Hesperidin , Antiviral Agents/pharmacology , COVID-19/drug therapy , Computational Biology , Glucosides , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
9.
Emerg Microbes Infect ; 11(1): 829-840, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1713526

ABSTRACT

Waned vaccine-induced immunity and emerging severe acute respiratory syndrome coronavirus 2 variants with potential for immune escape pose a major threat to the coronavirus disease (COVID-19) pandemic. Here, we showed that humoral immunity components, including anti-S + N, anti-RBD IgG, and neutralizing antibodies (NAbs), gradually waned and decreased the neutralizing capacity against emerging Omicron variants at 3 and 6 months after two inactivated COVID-19 vaccinations. We evaluated two boosting strategies with either a third dose of inactivated vaccine (homologous, I-I-I) or a recombinant subunit vaccine (heterologous, I-I-S). Both strategies induced the production of high levels of NAbs with a broad neutralizing capacity and longer retention. Interestingly, I-I-S induced 3.5-fold to 6.8-fold higher NAb titres than I-I-I, with a broader neutralizing capacity against six variants of concern, including Omicron. Further immunological analysis revealed that the two immunization strategies differ considerably, not only in the magnitude of total NAbs produced, but also in the composite pattern of NAbs and the population of virus-specific CD4+ T cells produced. Additionally, in some cases, heterologous boosted immunity induced the production of more effective epitopes than natural infection. The level of I-I-S-induced NAbs decreased to 48% and 18% at 1 and 3 months after booster vaccination, respectively. Overall, our data provide important evidence for vaccination strategies based on available vaccines and may help guide future global vaccination plans.


Subject(s)
Antibodies, Neutralizing , COVID-19 Vaccines/immunology , COVID-19 , T-Lymphocytes , Antibodies, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Vaccination , Vaccines, Subunit
10.
J Clin Invest ; 132(4)2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1705312

ABSTRACT

Many SARS-CoV-2 neutralizing antibodies (nAbs) lose potency against variants of concern. In this study, we developed 2 strategies to produce mutation-resistant antibodies. First, a yeast library expressing mutant receptor binding domains (RBDs) of the spike protein was utilized to screen for potent nAbs that are least susceptible to viral escape. Among the candidate antibodies, P5-22 displayed ultrahigh potency for virus neutralization as well as an outstanding mutation resistance profile. Additionally, P14-44 and P15-16 were recognized as mutation-resistant antibodies with broad betacoronavirus neutralization properties. P15-16 has only 1 binding hotspot, which is K378 in the RBD of SARS-CoV-2. The crystal structure of the P5-22, P14-44, and RBD ternary complex clarified the unique mechanisms that underlie the excellent mutation resistance profiles of these antibodies. Secondly, polymeric IgG enhanced antibody avidity by eliminating P5-22's only hotspot, residue F486 in the RBD, thereby potently blocking cell entry by mutant viruses. Structural and functional analyses of antibodies screened using both potency assays and the yeast RBD library revealed rare, ultrapotent, mutation-resistant nAbs against SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody Affinity , B-Lymphocytes/immunology , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/blood , Broadly Neutralizing Antibodies/genetics , COVID-19/therapy , Cloning, Molecular , Disease Models, Animal , Humans , Immunization, Passive , Immunoglobulin G/immunology , In Vitro Techniques , Lung/virology , Mice , Mice, Inbred BALB C , Mutation , Neutralization Tests , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
11.
Front Microbiol ; 12: 801946, 2021.
Article in English | MEDLINE | ID: covidwho-1690426

ABSTRACT

China implemented stringent non-pharmaceutical interventions (NPIs) in spring 2020, which has effectively suppressed SARS-CoV-2. In this study, we utilized data from routine respiratory virus testing requests from physicians and examined circulation of 11 other respiratory viruses in Southern China, from January 1, 2018 to December 31, 2020. A total of 58,169 throat swabs from patients with acute respiratory tract infections (ARTIs) were collected and tested. We found that while the overall activity of respiratory viruses was lower during the period with stringent NPIs, virus activity rebounded shortly after the NPIs were relaxed and social activities resumed. Only influenza was effectively suppressed with very low circulation which extended to the end of 2020. Circulation of other respiratory viruses in the community was maintained even during the period of stringent interventions, especially for rhinovirus. Our study shows that NPIs against COVID-19 have different impacts on respiratory viruses.

12.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-320695

ABSTRACT

Background: Since 2020 COVID-19 pandemic became an emergent public sanitary incident. The epidemiology data and the impact on prognosis of secondary infection in severe and critical COVID-19 patients in China remained largely unclear. Methods: . We retrospectively reviewed medical records of all adult patients with laboratory-confirmed COVID-19 who were admitted to ICUs from January 18 th 2020 to April 26 th 2020 at two hospitals in Wuhan, China and one hospital in Guangzhou, China. We measured the frequency of bacteria and fungi cultured from respiratory tract, blood and other body fluid specimens. The risk factors for and impact of secondary infection on clinical outcomes were also assessed. Results: . Secondary infections were very common (86.6%) when patients were admitted to ICU for >72 hours. The majority of infections were respiratory, with the most common organisms being Klebsiella pneumoniae (24.5%), Acinetobacter baumannii (21.8%), Stenotrophomonas maltophilia (9.9%), Candida albicans (6.8%), and Pseudomonas spp. (4.8%). Furthermore, the proportions of multidrug resistant (MDR) bacteria and carbapenem resistant Enterobacteriaceae (CRE) were high. We also found that age ≥60 years and mechanical ventilation ≥13days independently increased the likelihood of secondary infection. Finally, patients with positive cultures had reduced ventilator free days in 28 days and patients with CRE and/or MDR bacteria positivity showed lower 28 day survival rate. Conclusions: . In a retrospective cohort of severe and critical COVID-19 patients admitted to ICUs in China, the prevalence of secondary infection was high, especially with CRE and MDR bacteria, resulting in poor clinical outcomes.

13.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-320694

ABSTRACT

Background: Since the clinical correlates, prognosis and determinants of AKI in patients with Covid-19 remain largely unclear, we perform a retrospective study to evaluate the incidence, risk factors and prognosis of AKI in severe and critically ill patients with Covid-19. Methods: : We reviewed medical records of all adult patients (>18 years) with laboratory-confirmed Covid-19 who were admitted to the intensive care unit (ICU) between January 23 rd 2020 and April 6 th 2020 at Wuhan JinYinTan Hospital and The First Affiliated Hospital of Guangzhou Medical University. The clinical data, including patient demographics, clinical symptoms and signs, laboratory findings, treatment [including respiratory supports, use of medications and continuous renal replacement therapy (CRRT)] and clinical outcomes, were extracted from the electronic records, and we access the incidence of AKI and the use of CRRT, risk factors for AKI, the outcomes of renal diseases, and the impact of AKI on the clinical outcomes. Results: : Among 210 subjects, 131 were males (62.4%). The median age was 64 years (IQR: 56-71). Of 92 (43.8%) patients who developed AKI during hospitalization, 13 (14.1%), 15 (16.3%) and 64 (69.6%) patients were classified as stage 1, 2 and 3, respectively. 54 cases (58.7%) received CRRT. Age, sepsis, Nephrotoxic drug, IMV and elevated baseline Scr were associated with AKI occurrence. The renal recover during hospitalization among 16 AKI patients (17.4%), who had a significantly shorter time from admission to AKI diagnosis, lower incidence of right heart failure and higher P/F ratio. Of 210 patients, 93 patients deceased within 28 days of ICU admission. AKI stage 3, critical disease, greater age and minimum P/F <150mmHg independently associated with it. Conclusions: : Among patients with Covid-19, the incidence of AKI was high. age , sepsis, nephrotoxic drug, IMV and baseline Scr were strongly associated with the development of AKI. Time from admission to AKI diagnosis, right heart failure and P/F ratio were independently associated with the potential of renal recovery. Finally, AKI KIDGO stage 3 independently predicted the risk of death within 28 days of ICU admission.

14.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315375

ABSTRACT

Background: Rapid and convenient screening for identification of SARS-CoV-2 infected individuals are key to prevent and control this pandemic. Methods The peripheral blood samples were collected from coronavirus disease 2019 (COVID-19) patients and asymptomatic carriers to evaluate the test characteristics of the IgM-IgG combined assay for SARS-CoV-2 compared to that of serum samples and enzyme-linked immuno sorbent assay (ELISA). Close contacts, healthcare workers and workforces were recruited and screened using this assay. Results The sensitivity of the rapid IgM-IgG combined antibody test for SARS-CoV-2 using peripheral blood (sued as a POCT) was 97.0% and the specificity was 99.2%, which was consistent with the result obtained using serum sample (consistency is about 100%). Furthermore, this POCT assay also can detect IgM and IgG antibodies of SARS-CoV‐2 in asymptomatic carriers, with 19 of the 20 RT-PCR confirmed asymptomatic carriers testing positive. Therefore, this POCT assay was used for population screening of SARS-CoV-2 infection diagnosis. First, it found 4 positive close contacts among the 10 cases, and there were three IgM positive cases and one IgG positive case among them. It is worth noting that the IgM positive cases also tested positive for the nucleic acid of the SARS-CoV-2. Second, there was one IgM positive assay among the 63 healthcare workers, but RT-PCR of SARS CoV-2 was negative. Third, for workforces screening, there were no positive cases. Conclusions The IgM-IgG combined antibody test of SARS-CoV-2 can be used as a POCT for rapid screening of SARS-CoV-2 infection.

15.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315351

ABSTRACT

The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 81,400 laboratory-confirmed human infections, including 3261 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. To identify immunodominant peptides for designing global peptide vaccine for combating the infections caused by 2019-nCoV, the structure and immunogenicity of 2019-nCoV structural protein were analyzed by bioinformatics tools. 33 B-cell epitopes and 39 T-cell epitopes were determined in four structural proteins via different immunoinformatic tools in which include spike protein (22 B-cell epitopes, 25 T-cell epitopes ), nucleocapsid protein (7 B-cell epitopes, 6 T-cell epitopes), membrane protein (2 B-cell epitopes, 7 T-cell epitopes), and envelope protein (2 B-cell epitopes, 1T-cell epitopes), respectively. The proportion of epitope residues in primary sequence was used to determine the antigenicity and immunogenicity of proteins. The envelope protein has the largest antigenicity in which residue coverage of B-cell epitopes is 24%. The membrane protein possesses the largest immunogenicity in which residue coverage of T-cell epitopes is 55.86%. The reason that immune storm was caused by 2019-nCoV maybe that the membrane and envelope protein expressed plentifully in cell infected. Further, studies involving experimental validation of these predicted epitopes is warranted to ensure the potential of B-cells and T-cells stimulation for their effective use as vaccine candidates. These findings provide the basis for starting further studies on the pathogenesis, and optimizing the design of diagnostic, antiviral and vaccination strategies for this emerging infection.

16.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311008

ABSTRACT

Background: The Coronavirus Disease 2019 (COVID-19) already have been as a pandemic. However, knowledge about the sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains limited. Here we descirbe the pulmonary function test (PFT) and cardiopulmonary exercise test (CPET) of critically ill COVID-19 in four cases with sereve acute respiratory distress syndrome (ARDS) after discharge. Case presentation: We introduce four patients who complained of fever, cough, chest tightness and other symptoms, all of them were confirmed as SARS-CoV-2 infection by real-time reverse transcription polymerase chain reaction (RT-PCR). They were treated with mechanical ventilation because of severe ARDS. After respiratory support, antiviral and anti-infective treatment, they were weaned from mechanic ventilation with the improvement of hypoxemia. All patients were discharged from the hospital after completion of treatment and had no mortality. Around 1-month post-discharge, they were followed up for chest computed tomography (CT) scan, and performed PFT and CPET. Peak oxygen uptake of predicted (peakVO 2 % pred) decreased in all four cases, although spirometry were in the normal range, and only 2 cases had mild decline in carbon monoxide diffusion capacity of predicted (DLCO%pred). Conclusions: : We found reduced exercise endurance in all four COVID-19 survivors, even parts of them with normal or slightly abnormal static lung function. We also believe that exercise endurance impairment of COVID-19 convalescents is more likely affected by extrapulmonary factors. Taken the above into consideration, our study highlights that the combination of PFT and CPET are important tests for tracking the development and recovery of COVID-19 survivors.

17.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325217

ABSTRACT

Objectives: The pandemic of the coronavirus disease 2019 (COVID-19) continuously poses a serious threat to public health, highlighting an urgent need for simple and efficient early detection and prediction. Methods: : We comprehensively investigated and reanalyzed the published indexes and models for predicting severe illness among COVID‑19 patients in our dataset, and validated them on an independent dataset. Results: : 696 COVID-19 cases in the discovery stage and 337 patients in the validation stage were involved. The AuROC of neutrophil to lymphocyte ratio (NLR) (0.782) was significantly higher than that of the other 11 independent risk indexes in severe outcome prediction. The combination of NLR and oxygen saturation (SaO 2 ) (NLR+SaO 2 ) showed the biggest AuROC calculations with a value of 0.901;with a cut-off value of 0.532, it exhibited 84.2% sensitivity, 88.4% specificity and 86.8% correct classification ratio. Moreover, we first identified that principal component analysis (PCA) is an effective tool to predict the severity of COVID-19. We obtained 86.5% prediction accuracy with 86% sensitivity when PCA was applied to predict severe illness. In addition, to evaluate the performance of NLR+SaO 2 and PCA, we compared them with currently published predictive models in the same dataset. Conclusions: : It showed that NLR+SaO 2 is an appropriate and promising method for predicting severe illness, followed by PCA. We then validated the results on an independent dataset and revealed that they remained robust accuracy in outcome prediction. This study is significant for early treatment, intervention, triage and saving limited resources.

18.
EClinicalMedicine ; 43: 101255, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1676715

ABSTRACT

BACKGROUND: The dynamic trends of pulmonary function in coronavirus disease 2019 (COVID-19) survivors since discharge have been rarely described. We aimed to describe the changes of lung function and identify risk factors for impaired diffusion capacity. METHODS: Non-critical COVID-19 patients admitted to the Guangzhou Eighth People's Hospital, China, were enrolled from March to June 2020. Subjects were prospectively followed up with pulmonary function tests at discharge, three and six months after discharge. FINDINGS: Eighty-six patients completed diffusion capacity tests at three timepoints. The mean diffusion capacity for carbon monoxide (DLCO)% pred was 79.8% at discharge and significantly improved to 84.9% at Month-3. The transfer coefficient of the lung for carbon monoxide (KCO)% pred significantly increased from 91.7% at discharge to 95.7% at Month-3. Both of them showed no further improvement at Month-6. The change rates of DLCO% pred and KCO% pred were significantly higher in 0-3 months than in 3-6 months. The alveolar ventilation (VA) improved continuously during the follow-ups. At Month-6, impaired DLCO% pred was associated with being female (OR 5.2 [1.7-15.8]; p = 0.004) and peak total lesion score (TLS) of chest CT > 8.5 (OR 6.6 [1.7-26.5]; p = 0.007). DLCO% pred and KCO% pred were worse in females at discharge. And in patients with impaired diffusion capacity, females' DLCO% pred recovered slower than males. INTERPRETATION: The first three months is the critical recovery period for diffusion capacity. The impaired diffusion capacity was more severe and recovered slower in females than in males. Early pulmonary rehabilitation and individualized interventions for recovery are worthy of further investigations.

19.
Genome Res ; 32(2): 228-241, 2022 02.
Article in English | MEDLINE | ID: covidwho-1642462

ABSTRACT

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , RNA/blood , COVID-19/blood , COVID-19/genetics , Cell-Free Nucleic Acids/blood , Cytokine Release Syndrome , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL