Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Vaccine ; 40(49): 7141-7150, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2086812

ABSTRACT

The mass vaccination program has been actively promoted since the end of 2020. However, waning immunity, antibody-dependent enhancement (ADE), and increased transmissibility of variants make the herd immunity untenable and the implementation of dynamic zero-COVID policy challenging in China. To explore how long the vaccination program can prevent China at low resurgence risk, and how these factors affect the long-term trajectory of the COVID-19 epidemics, we developed a dynamic transmission model of COVID-19 incorporating vaccination and waning immunity, calibrated using the data of accumulative vaccine doses administered and the COVID-19 epidemic in 2020 in mainland China. The prediction suggests that the vaccination coverage with at least one dose reach 95.87%, and two doses reach 77.92% on 31 August 2021. However, despite the mass vaccination, randomly introducing infected cases in the post-vaccination period causes large outbreaks quickly with waning immunity, particularly for SARS-CoV-2 variants with higher transmissibility. The results showed that with the current vaccination program and 50% of the population wearing masks, mainland China can be protected at low resurgence risk until 8 January 2023. However, ADE and higher transmissibility for variants would significantly shorten the low-risk period by over 1 year. Furthermore, intermittent outbreaks can occur while the peak values of the subsequent outbreaks decrease, indicating that subsequent outbreaks boosted immunity in the population level, further indicating that follow-up vaccination programs can help mitigate or avoid the possible outbreaks. The findings revealed that the integrated effects of multiple factors: waning immunity, ADE, relaxed interventions, and higher variant transmissibility, make controlling COVID-19 challenging. We should prepare for a long struggle with COVID-19, and not entirely rely on the COVID-19 vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Antibody-Dependent Enhancement , COVID-19 Vaccines , Vaccination/methods , China/epidemiology
2.
Bull Math Biol ; 84(10): 106, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-2014403

ABSTRACT

COVID-19 epidemics exhibited multiple waves regionally and globally since 2020. It is important to understand the insight and underlying mechanisms of the multiple waves of COVID-19 epidemics in order to design more efficient non-pharmaceutical interventions (NPIs) and vaccination strategies to prevent future waves. We propose a multi-scale model by linking the behaviour change dynamics to the disease transmission dynamics to investigate the effect of behaviour dynamics on COVID-19 epidemics using game theory. The proposed multi-scale models are calibrated and key parameters related to disease transmission dynamics and behavioural dynamics with/without vaccination are estimated based on COVID-19 epidemic data (daily reported cases and cumulative deaths) and vaccination data. Our modeling results demonstrate that the feedback loop between behaviour changes and COVID-19 transmission dynamics plays an essential role in inducing multiple epidemic waves. We find that the long period of high-prevalence or persistent deterioration of COVID-19 epidemics could drive almost all of the population to change their behaviours and maintain the altered behaviours. However, the effect of behaviour changes fades out gradually along the progress of epidemics. This suggests that it is essential to have not only persistent, but also effective behaviour changes in order to avoid subsequent epidemic waves. In addition, our model also suggests the importance to maintain the effective altered behaviours during the initial stage of vaccination, and to counteract relaxation of NPIs, it requires quick and massive vaccination to avoid future epidemic waves.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , COVID-19/prevention & control , Epidemics/prevention & control , Game Theory , Humans , Mathematical Concepts , Models, Biological
3.
Math Biosci Eng ; 19(9): 9060-9078, 2022 06 22.
Article in English | MEDLINE | ID: covidwho-1917919

ABSTRACT

Several outbreaks of COVID-19 caused by imported cases have occurred in China following the successful control of the outbreak in early 2020. In order to avoid recurrences of such local outbreaks, it is important to devise an efficient control and prevention strategy. In this paper, we developed a stochastic discrete model of the COVID-19 epidemic in Guangzhou in 2021 to compare the effectiveness of centralized quarantine and compulsory home quarantine measures. The model was calibrated by using the daily reported cases and newly centralized quarantined cases. The estimated results showed that the home quarantine measure increased the accuracy of contact tracing. The estimated basic reproduction number was lower than that in 2020, even with a much more transmissible variant, demonstrating the effectiveness of the vaccines and normalized control interventions. Sensitivity analysis indicated that a sufficiently implemented contact tracing and centralized quarantine strategy in the initial stage would contain the epidemic faster with less infections even with a weakly implemented compulsory home quarantine measure. However, if the accuracy of the contact tracing was insufficient, then early implementation of the compulsory home quarantine with strict contact tracing, screening and testing interventions on the key individuals would shorten the epidemic duration and reduce the total number of infected cases. Particularly, 94 infections would have been avoided if the home quarantine measure had been implemented 3 days earlier and an extra 190 infections would have arisen if the home quarantine measure was implemented 3 days later. The study suggested that more attention should be paid to the precise control strategy during the initial stage of the epidemic, otherwise the key group-based control measure should be implemented strictly.


Subject(s)
COVID-19 , Quarantine , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Humans , SARS-CoV-2
4.
J Theor Biol ; 549: 111205, 2022 09 21.
Article in English | MEDLINE | ID: covidwho-1907378

ABSTRACT

Several local outbreaks have occurred and been suppressed with the dynamic zero-COVID policy and widely promoted vaccination program implemented in China. The epidemic duration and final size vary significantly in different cities, which may be attributed to different implementation patterns and intensities of non-pharmaceutical interventions (NPIs). It's important to capture the underlying mechanism to explore more efficient implementation patterns of NPIs in order to prevent the future resurgence. In this study, outbreaks caused by Delta variant in Xi'an, Yangzhou and Guangzhou in 2021 are chosen as the examples. A novel model dividing the population into three groups is proposed to describe the heterogeneity of control interventions. The model is calibrated and key parameters related to NPIs are estimated by using multi-source epidemic data. The estimation results show a lower transmission probability but a higher initial reproduction number in Xi'an. Sensitivity analysis are conducted to investigate the impact of various control measures in different epidemic phases. The results identify the vital role of enhancing closed-off management, strengthening tracing and testing intensities, on shortening the epidemic durations and reducing the final size. Further, we find that sufficiently implemented closed-off management would prevent the city from lockdown. Strengthening the tracing other than the testing strategy in the initial stage is more effective on containing the epidemic in a shorter duration with less infections.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Disease Outbreaks/prevention & control , Humans , Quarantine
5.
Math Biosci Eng ; 19(2): 1388-1410, 2022 01.
Article in English | MEDLINE | ID: covidwho-1593802

ABSTRACT

The large-scale infection of COVID-19 has led to a significant impact on lives and economies around the world and has had considerable impact on global public health. Social distancing, mask wearing and contact tracing have contributed to containing or at least mitigating the outbreak, but how public awareness influences the effectiveness and efficiency of such approaches remains unclear. In this study, we developed a discrete compartment dynamic model to mimic and explore how media reporting and the strengthening containment strategies can help curb the spread of COVID-19 using Shaanxi Province, China, as a case study. The targeted model is parameterized based on multi-source data, including the cumulative number of confirmed cases, recovered individuals, the daily number of media-reporting items and the imported cases from the rest of China outside Shaanxi from January 23 to April 11, 2020. We carried out a sensitivity analysis to investigate the effect of media reporting and imported cases on transmission. The results revealed that reducing the intensity of media reporting, which would result in a significant increasing of the contact rate and a sizable decreasing of the contact-tracing rate, could aggravate the outbreak severity by increasing the cumulative number of confirmed cases. It also demonstrated that diminishing the imported cases could alleviate the outbreak severity by reducing the length of the epidemic and the final size of the confirmed cases; conversely, delaying implementation of lockdown strategies could prolong the length of the epidemic and magnify the final size. These findings suggest that strengthening media coverage and timely implementing of lockdown measures can significantly reduce infection.


Subject(s)
COVID-19 , Epidemics , China/epidemiology , Communicable Disease Control , Humans , SARS-CoV-2
6.
Int J Environ Res Public Health ; 17(22)2020 11 18.
Article in English | MEDLINE | ID: covidwho-934496

ABSTRACT

The global outbreak of COVID-19 has caused worrying concern amongst the public and health authorities. The first and foremost problem that many countries face during the outbreak is a shortage of medical resources. In order to investigate the impact of a shortage of hospital beds on the COVID-19 outbreak, we formulated a piecewise smooth model for describing the limitation of hospital beds. We parameterized the model while using data on the cumulative numbers of confirmed cases, recovered cases, and deaths in Wuhan city from 10 January to 12 April 2020. The results showed that, even with strong prevention and control measures in Wuhan, slowing down the supply rate, reducing the maximum capacity, and delaying the supply time of hospital beds all aggravated the outbreak severity by magnifying the cumulative numbers of confirmed cases and deaths, lengthening the end time of the pandemic, enlarging the value of the effective reproduction number during the outbreak, and postponing the time when the threshold value was reduced to 1. Our results demonstrated that establishment of the Huoshenshan, Leishenshan, and Fangcang shelter hospitals avoided 22,786 people from being infected and saved 6524 lives. Furthermore, the intervention of supplying hospital beds avoided infections in 362,360 people and saved the lives of 274,591 persons. This confirmed that the quick establishment of the Huoshenshan, Leishenshan Hospitals, and Fangcang shelter hospitals, and the designation of other hospitals for COVID-19 patients played important roles in containing the outbreak in Wuhan.


Subject(s)
Beds/supply & distribution , Coronavirus Infections/epidemiology , Hospital Bed Capacity/statistics & numerical data , Pneumonia, Viral/epidemiology , Betacoronavirus , COVID-19 , China/epidemiology , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL