Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Int J Biol Sci ; 18(12): 4648-4657, 2022.
Article in English | MEDLINE | ID: covidwho-1954693


Asymptomatic infection with SARS-CoV-2 is a major concern in the control of the COVID-19 pandemic. Many questions concerning asymptomatic infection remain to be answered, for example, what are the differences in infectivity and the immune response between asymptomatic and symptomatic infections? In this study, based on a cohort established by the Wuchang District Health Bureau of Wuhan in the early stage of the COVID-19 pandemic in Wuhan in 2019, we conducted a comprehensive analysis of the clinical, virological, immunological, and epidemiological data of asymptomatic infections. The major findings of this study included: 1) the asymptomatic cohort enrolled this study exhibited low-grade but recurrent activity of viral replication; 2) despite a lack of overt clinical symptoms, asymptomatic infections exhibited ongoing innate and adaptive immune responses; 3) however, the immune response from asymptomatic infections was not activated adequately, which may lead to delayed viral clearance. Given the fragile equilibrium between viral infection and host immunity, and the delayed viral clearance in asymptomatic individuals, close viral monitoring should be scheduled, and therapeutic intervention may be needed.

COVID-19 , Asymptomatic Infections , Humans , Immunity , Immunity, Innate , Pandemics , SARS-CoV-2
Front Immunol ; 12: 701295, 2021.
Article in English | MEDLINE | ID: covidwho-1359190


The current pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has already become a global threat to the human population. Infection with SARS-CoV-2 leads to a wide spectrum of clinical manifestations. Ocular abnormalities have been reported in association with COVID-19, but the nature of the impairments was not specified. Here, we report a case of a female patient diagnosed with glaucoma on re-hospitalization for ocular complications two months after being discharged from the hospital upon recovery from COVID-19. Meanwhile, the patient was found re-positive for SARS-CoV-2 in the upper respiratory tract. The infection was also diagnosed in the aqueous humor through immunostaining with antibodies against the N protein and S protein of SARS-CoV-2. Considering the eye is an immune-privileged site, we speculate that SARS-CoV-2 survived in the eye and resulted in the patient testing re-positive for SARS-CoV-2.

Aqueous Humor/virology , COVID-19/pathology , Glaucoma/pathology , Reinfection/pathology , Aged , COVID-19/complications , Eye/pathology , Eye/virology , Female , Glaucoma/complications , Humans , SARS-CoV-2/isolation & purification
Emerg Microbes Infect ; 10(1): 905-912, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1191602


Without an effective vaccine against SARS-CoV-2, the build-up of herd immunity through natural infection has been suggested as a means to control COVID-19. Although population immunity is typically estimated by the serological investigation of recovered patients, humoral immunity in asymptomatic subjects has not been well studied, although they represent a large proportion of all SARS-CoV-2 infection cases. In this study, we conducted a serosurvey of asymptomatic infections among food workers and performed serological and cellular response analyses of asymptomatic subjects in Wuhan, the original epicenter of the COVID-19 outbreak. Our data showed that up to 5.91% of the food workers carried SARS-CoV-2 IgG antibodies asymptomatically; however, in 90.4% of them, the antibody level declined over a 2-week period. IgM and IgG antibodies, including neutralizing antibodies, were significantly lower in asymptomatic subjects than in recovered symptomatic patients with similar disease courses. Furthermore, the asymptomatic subjects showed lymphopenia and a prominent decrease in the B-cell population, as well as a low frequency of antibody-secreting cells and a low cytokine response. These factors probably contributed to the low and unsustained antibody levels in asymptomatic subjects. Our results show that asymptomatic subjects are likely to be vulnerable to SARS-CoV-2 reinfection, and neither the proportion of population immunity nor the breadth of immune responses is sufficient for herd immunity.

Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Asymptomatic Infections , COVID-19 Serological Testing , COVID-19/immunology , Immunoglobulin G/blood , Immunoglobulin M/blood , Pandemics , SARS-CoV-2/immunology , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , B-Lymphocytes , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , China/epidemiology , Convalescence , Cytokines/blood , Disease Susceptibility , Enzyme-Linked Immunosorbent Assay , Follow-Up Studies , Food Handling , Genome, Viral , Humans , Immunity, Herd , Immunoglobulin G/biosynthesis , Immunoglobulin M/biosynthesis , Lymphocyte Count , Lymphopenia/etiology , Phylogeny , RNA, Viral/blood , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Seroepidemiologic Studies , Sputum/virology