Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Res ; 31(8): 847-860, 2021 08.
Article in English | MEDLINE | ID: covidwho-1387284

ABSTRACT

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , COVID-19/pathology , Coronavirus Envelope Proteins/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Apoptosis , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/genetics , Cytokines/metabolism , Disease Models, Animal , Half-Life , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis, Site-Directed , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Spleen/metabolism , Spleen/pathology , Viral Load , Virulence
2.
Cell Res ; 31(8): 847-860, 2021 08.
Article in English | MEDLINE | ID: covidwho-1265947

ABSTRACT

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , COVID-19/pathology , Coronavirus Envelope Proteins/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Apoptosis , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/genetics , Cytokines/metabolism , Disease Models, Animal , Half-Life , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis, Site-Directed , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Spleen/metabolism , Spleen/pathology , Viral Load , Virulence
3.
Sci Rep ; 11(1): 8694, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1199314

ABSTRACT

Social and mental stressors associated with the pandemic of a novel infectious disease, e.g., COVID-19 or SARS may promote long-term effects on child development. However, reports aimed at identifying the relationship between pandemics and child health are limited. A retrospective study was conducted to associate the SARS pandemic in 2003 with development milestones or physical examinations among longitudinal measurements of 14,647 children. Experiencing SARS during childhood was associated with delayed milestones, with hazard ratios of 3.17 (95% confidence intervals CI: 2.71, 3.70), 3.98 (3.50, 4.53), 4.96 (4.48, 5.49), or 5.57 (5.00, 6.20) for walking independently, saying a complete sentence, counting 0-10, and undressing him/herself for urination, respectively. These results suggest relevant impacts from COVID-19 on child development should be investigated.


Subject(s)
COVID-19/psychology , Child Development , Severe Acute Respiratory Syndrome/psychology , Child , Child, Preschool , China , Female , Humans , Infant , Male , Retrospective Studies
4.
Innovation (N Y) ; 1(3): 100046, 2020 Nov 25.
Article in English | MEDLINE | ID: covidwho-1164617

ABSTRACT

[This corrects the article DOI: 10.1016/j.xinn.2020.100028.].

5.
Innovation (N Y) ; 1(2): 100028, 2020 08 28.
Article in English | MEDLINE | ID: covidwho-720752

ABSTRACT

Since the outbreak of COVID-19, many randomized controlled trials have been launched to test the efficacy of promising treatments. These trials will offer great promise for future treatment. However, a public health emergency calls for a balance between gathering sound evidence and granting therapeutic access to promising trial drugs as widely as possible. In an electronic survey, we found that 3.9% of the participants preferred to receive an unproven trial drug directly in the hypothetical scenario of mild COVID-19 infection. This percentage increased drastically to 31.1% and 54.2% in the hypothetical scenario of severe and extremely severe infection, respectively. Our survey indicates a likelihood of substantial receptivity of trial drugs among actual patients in severe conditions. From the perspective of deontological ethics, a trial can only be approved when potential benefits of the investigational treatment are presumed to outweigh risks, so compassionate or off-label use of investigational therapies merits evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL