Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Infect Dis Poverty ; 10(1): 96, 2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1337526


BACKGROUND: The transmission dynamics and severity of coronavirus disease 2019 (COVID-19) pandemic is different across countries or regions. Differences in governments' policy responses may explain some of these differences. We aimed to compare worldwide government responses to the spread of COVID-19, to examine the relationship between response level, response timing and the epidemic trajectory. METHODS: Free publicly-accessible data collected by the Coronavirus Government Response Tracker (OxCGRT) were used. Nine sub-indicators reflecting government response from 148 countries were collected systematically from January 1 to May 1, 2020. The sub-indicators were scored and were aggregated into a common Stringency Index (SI, a value between 0 and 100) that reflects the overall stringency of the government's response in a daily basis. Group-based trajectory modelling method was used to identify trajectories of SI. Multivariable linear regression models were used to analyse the association between time to reach a high-level SI and time to the peak number of daily new cases. RESULTS: Our results identified four trajectories of response in the spread of COVID-19 based on when the response was initiated: before January 13, from January 13 to February 12, from February 12 to March 11, and the last stage-from March 11 (the day WHO declared a pandemic of COVID-19) on going. Governments' responses were upgraded with further spread of COVID-19 but varied substantially across countries. After the adjustment of SI level, geographical region and initiation stages, each day earlier to a high SI level (SI > 80) from the start of response was associated with 0.44 (standard error: 0.08, P < 0.001, R2 = 0.65) days earlier to the peak number of daily new case. Also, each day earlier to a high SI level from the date of first reported case was associated with 0.65 (standard error: 0.08, P < 0.001, R2 = 0.42) days earlier to the peak number of daily new case. CONCLUSIONS: Early start of a high-level response to COVID-19 is associated with early arrival of the peak number of daily new cases. This may help to reduce the delays in flattening the epidemic curve to the low spread level.

COVID-19/epidemiology , Global Health/statistics & numerical data , Government , Health Policy , Humans , Multivariate Analysis , Pandemics , Quarantine , Time Factors
Biomed Environ Sci ; 33(12): 893-905, 2020 Dec 20.
Article in English | MEDLINE | ID: covidwho-1060079


OBJECTIVE: Several COVID-19 patients have overlapping comorbidities. The independent role of each component contributing to the risk of COVID-19 is unknown, and how some non-cardiometabolic comorbidities affect the risk of COVID-19 remains unclear. METHODS: A retrospective follow-up design was adopted. A total of 1,160 laboratory-confirmed patients were enrolled from nine provinces in China. Data on comorbidities were obtained from the patients' medical records. Multivariable logistic regression models were used to estimate the odds ratio ( OR) and 95% confidence interval (95% CI) of the associations between comorbidities (cardiometabolic or non-cardiometabolic diseases), clinical severity, and treatment outcomes of COVID-19. RESULTS: Overall, 158 (13.6%) patients were diagnosed with severe illness and 32 (2.7%) had unfavorable outcomes. Hypertension (2.87, 1.30-6.32), type 2 diabetes (T2DM) (3.57, 2.32-5.49), cardiovascular disease (CVD) (3.78, 1.81-7.89), fatty liver disease (7.53, 1.96-28.96), hyperlipidemia (2.15, 1.26-3.67), other lung diseases (6.00, 3.01-11.96), and electrolyte imbalance (10.40, 3.00-26.10) were independently linked to increased odds of being severely ill. T2DM (6.07, 2.89-12.75), CVD (8.47, 6.03-11.89), and electrolyte imbalance (19.44, 11.47-32.96) were also strong predictors of unfavorable outcomes. Women with comorbidities were more likely to have severe disease on admission (5.46, 3.25-9.19), while men with comorbidities were more likely to have unfavorable treatment outcomes (6.58, 1.46-29.64) within two weeks. CONCLUSION: Besides hypertension, diabetes, and CVD, fatty liver disease, hyperlipidemia, other lung diseases, and electrolyte imbalance were independent risk factors for COVID-19 severity and poor treatment outcome. Women with comorbidities were more likely to have severe disease, while men with comorbidities were more likely to have unfavorable treatment outcomes.

COVID-19/complications , Adult , Aged , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , China/epidemiology , Comorbidity , Female , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Treatment Outcome