ABSTRACT
Background: The quantitative level and kinetics of neutralizing antibodies (NAbs) in individuals with Omicron breakthrough infections may differ from those of vaccinated individuals without infection. Therefore, we aimed to evaluate the difference in NAb levels to distinguish the breakthrough cases from the post-immunized population to identify early infected person in an outbreak epidemic when nasal and/or pharyngeal swab nucleic acid real-time PCR results were negative. Methods: We collected 1077 serum samples from 877 individuals, including 189 with Omicron BA.2 breakthrough infection and 688 post-immunized participants. NAb titers were detected using the surrogate virus neutralization test, and were log(2)-transformed to normalize prior to analysis using Student's unpaired t-tests. Geometric mean titers (GMT) were calculated with 95% confidence intervals (CI). Linear regression models were used to identify factors associated with NAb levels. We further conducted ROC curve analysis to evaluate the NAbs' ability to identify breakthrough infected individuals in the vaccinated population. Results: The breakthrough infection group had a consistently higher NAb levels than the post-immunized group according to time since the last vaccination. NAb titers in the breakthrough infection group were 6.4-fold higher than those in the post-immunized group (GMT: 40.72 AU/mL and 6.38 AU/mL, respectively; p<0.0001). In the breakthrough infection group, the NAbs in the convalescent phase were 10.9-fold higher than in the acute phase (GMT: 200.48 AU/mL and 18.46 AU/mL, respectively; p<0.0001). In addition, the time since infection, booster vaccination, and the time since last vaccination were associated with log(2)-transformed NAb levels in the breakthrough infection group. ROC curve analysis showed that ROC area was largest (0.728) when the cut-off value of log(2)-transformed NAb was 6, which indicated that NAb levels could identify breakthrough infected individuals in the vaccinated population. Conclusion: Our study demonstrates that the NAb titers of Omicron BA.2 variant breakthrough cases are higher than in the post-immunized group. The difference in NAb levels could be used to identify cases of breakthrough infection from the post-immunized population in an outbreak epidemic.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Kinetics , COVID-19/prevention & control , Antibodies, Viral , Vaccination , Antibodies, Neutralizing , Breakthrough InfectionsABSTRACT
How much the vaccine contributes to the induction and development of neutralizing antibodies (NAbs) of breakthrough cases relative to those unvaccinated-infected cases is not fully understood. We conducted a prospective cohort study and collected serum samples from 576 individuals who were diagnosed with SARS-CoV-2 Delta strain infection, including 245 breakthrough cases and 331 unvaccinated-infected cases. NAbs were analyzed by live virus microneutralization test and transformation of NAb titer. NAbs titers against SARS-CoV-2 ancestral and Delta variant in breakthrough cases were 7.8-fold and 4.0-fold higher than in unvaccinated-infected cases, respectively. NAbs titers in breakthrough cases peaked at the second week after onset/infection. However, the NAbs titers in the unvaccinated-infected cases reached their highest levels during the third week. Compared to those with higher levels of NAbs, those with lower levels of NAbs had no difference in viral clearance duration time (P>0.05), did exhibit higher viral load at the beginning of infection/maximum viral load of infection. NAb levels were statistically higher in the moderate cases than in the mild cases (P<0.0001). Notably, in breakthrough cases, NAb levels were highest longer than 4 months after vaccination (Delta strain: 53118.2 U/mL), and lowest in breakthrough cases shorter than 1 month (Delta strain: 7551.2 U/mL). Cross-neutralization against the ancestral strain and the current circulating isolate (Omicron BA.5) was significantly lower than against the Delta variant in both breakthrough cases and unvaccinated-infected cases. Our study demonstrated that vaccination could induce immune responses more rapidly and greater which could be effective in controlling SARS-CoV-2.
ABSTRACT
Antibody persistence and safety up to 12 months of heterologous orally administered adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in individuals who were primed with two-dose inactivated SARS-CoV-2 vaccine (CoronaVac) previously, has not been reported yet. This randomized, open-label, single-centre trial included Chinese adults who have received two-dose CoronaVac randomized to low-dose or high-dose aerosolised Ad5-nCoV group, or CoronaVac group. In this report, we mainly evaluated the geometric mean titres (GMTs) of neutralizing antibodies (NAbs) against live wild-type SARS-CoV-2 virus and omicron BA.4/5 pseudovirus at 12 months after the booster dose and the incidence of serious adverse events (SAEs) till month 12. Of 419 participants, all were included in the safety analysis and 120 (28.64%) were included in the immunogenicity analysis. Serum NAb GMT against live wild-type SARS-CoV-2 was 204.36 (95% CI 152.91, 273.14) in the low-dose group and 171.38 (95% CI 121.27, 242.19) in the high-dose group at month 12, significantly higher than the GMT in the CoronaVac group (8.00 [95% CI 4.22, 15.17], p < 0.0001). Serum NAb GMT against omicron BA.4/5 pseudovirus was 40.97 (95% CI 30.15, 55.67) in the low-dose group and 35.08 (95% CI 26.31, 46.77) in the high-dose group at month 12, whereas the GMT in the CoronaVac group was below the lower limit of detection. No vaccine-related SAEs were observed. Orally administered aerosolised Ad5-nCoV following two-dose CoronaVac priming has a good safety profile and is persistently more immunogenic than three-dose CoronaVac within 12 months after the booster dose.Trial registration: ClinicalTrials.gov identifier: NCT05043259..
Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , SARS-CoV-2ABSTRACT
BACKGROUND: Due to waning immunity and protection against infection with SARS-CoV-2, a third dose of a homologous or heterologous COVID-19 vaccine has been proposed by health agencies for individuals who were previously primed with two doses of an inactivated COVID-19 vaccine. METHODS: We did a randomised, open-label, controlled trial to evaluate the safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in Chinese adults (≥18 years old) who had previously received two doses of an inactivated SARS-CoV-2 vaccine-Sinovac CoronaVac. Eligible participants were randomly assigned (1:1:1) to receive a heterologous booster vaccination with a low dose (1·0â×â1011 viral particles per mL; 0·1 mL; low dose group), or a high dose (1·0â×â1011 viral particles per mL; 0·2 mL; high dose group) aerosolised Ad5-nCoV, or a homologous intramuscular vaccination with CoronaVac (0·5 mL). Only laboratory staff were masked to group assignment. The primary endpoint for safety was the incidence of adverse reactions within 14 days after the booster dose. The primary endpoint for immunogenicity was the geometric mean titres (GMTs) of serum neutralising antibodies (NAbs) against live SARS-CoV-2 virus 14 days after the booster dose. This study was registered with ClinicalTrials.gov, NCT05043259. FINDINGS: Between Sept 14 and 16, 2021, 420 participants were enrolled: 140 (33%) participants per group. Adverse reactions were reported by 26 (19%) participants in the low dose group and 33 (24%) in the high dose group within 14 days after the booster vaccination, significantly less than the 54 (39%) participants in the CoronaVac group (p<0·0001). The low dose group had a serum NAb GMT of 744·4 (95% CI 520·1-1065·6) and the high dose group had a GMT of 714·1 (479·4-1063·7) 14 days after booster dose, significantly higher than the GMT in the CoronaVac group (78·5 [60·5-101·7]; p<0·0001). INTERPRETATION: We found that a heterologous booster vaccine with an orally administered aerosolised Ad5-nCoV is safe and highly immunogenic in adults who have previously received two doses of CoronaVac as the primary series vaccination. FUNDING: National Natural Science Foundation of China and Jiangsu Provincial Key Research and Development Program.
Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Research , SARS-CoV-2 , VaccinationABSTRACT
The rapid widespread Omicron subvariant BA.5 of SARS-CoV-2 has become a potential imminent pandemic threat, but available vaccines lack high efficacy against this subvariant. Thus, it is urgent to find highly protective vaccination strategies within available SARS-CoV-2 vaccines. Here, by using a SARS-CoV-2 pseudovirus neutralization assay, we demonstrated that the aerosol inhalation of adenoviral vector COVID-19 vaccine after two dose of inactivated vaccine (I-I-Ad5) led to higher levels of neutralizing antibodies against D614G strain (2041.00[95% CI, 1243.00-3351.00] vs 249.00[149.10-415.70]), Omicron BA.2 (467.10[231.00-944.40] vs 72.21[39.31-132.70]), BA.2.12.1(348.5[180.3-673.4] vs 53.17[31.29-90.37]), BA.2.13 (410.40[190.70-883.3] vs 48.48[27.87-84.32]), and BA.5 (442.40 vs 56.08[35.14-89.51]) than three inactivated vaccine doses (I-I-I). Additionally, the level of neutralizing antibodies against BA.5 induced by I-I-Ad5 was 2.41-fold higher than those boosted by a third dose of RBD subunit vaccine (I-I-S) (p = 0.1308). The conventional virus neutralizing assay confirmed that I-I-Ad5 induced higher titre of neutralizing antibodies than I-I-I (116.80[84.51-161.5] vs 4.40[4.00-4.83]). In addition, I-I-Ad5 induced higher, but later, anti-RBD IgG and IgA in plasma than I-I-I. Our study verified that mucosal immunization with aerosol inhalation of adenoviral vector COVID-19 vaccine may be an effective strategy to control the probable wave of BA.5 pandemic in addition to two inactivated vaccines.
Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Vaccines, Inactivated , Adenoviridae/geneticsABSTRACT
Background: BNT162b2, an mRNA vaccine against COVID-19, is being utilised worldwide, but immunogenicity and safety data in Chinese individuals are limited. Methods: This phase 2, randomised, double-blind, placebo-controlled trial included healthy or medically stable individuals aged 18-85 years enrolled at two clinical sites in China. Participants were stratified by age (≤55 or >55 years) and randomly assigned (3:1) by an independent randomisation professional to receive two doses of intramuscular BNT162b2 30 µg or placebo, administered 21 days apart. Study participants, study personnel, investigators, statisticians, and the sponsor's study management team were blinded to treatment assignment. Primary immunogenicity endpoints were the geometric mean titers (GMTs) of neutralising antibodies to live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seroconversion rates (SCR) 1 month after the second dose. Safety assessments included reactogenicity within 14 days of vaccination, adverse events (AEs), and clinical laboratory parameters. Randomised participants who received at least one dose were included in the efficacy and safety analyses on a complete case basis (incomplete/missing data not imputed). Results up to 6 months after the second dose are reported. Findings: Overall, 959 participants (all of Han ethnicity) who were recruited between December 5th, 2020 and January 9th, 2021 received at least one injection (BNT162b2, n=720; placebo, n=239). At 1 month after the second dose, the 50% neutralising antibody GMT was 294.4 (95% CI; 281.1-308.4) in the BNT162b2 group and 5.0 (95% CI; 5.0-5.0) in the placebo group. SCRs were 99.7% (95% CI; 99.0%-100.0%) and 0% (95% CI; 0.0%-1.5%), respectively (p<0.0001 vs placebo). Although the GMT of neutralising antibodies in the BNT162b2 group was greatly reduced at 6 months after the second dose, the SCR still remained at 58.8%. BNT162b2-elicited sera neutralised SARS-CoV-2 variants of concern. T-cell responses were detected in 58/73 (79.5%) BNT162b2 recipients. Reactogenicity was mild or moderate in severity and resolved within a few days after onset. Unsolicited AEs were uncommon at 1 month following vaccine administration, and there were no vaccine-related serious AEs at 1 month or 6 months after the second dose. Interpretation: BNT162b2 vaccination induced a robust immune response with acceptable tolerability in Han Chinese adults. However, follow-up duration was relatively short and COVID-19 rates were not assessed. Safety data collection is continuing until 12 months after the second dose. Funding: BioNTech - sponsored the trial. Shanghai Fosun Pharmaceutical Development Inc. (Fosun Pharma) - conducted the trial, funded medical writing. ClinicalTrialsgov registration number: NCT04649021. Trial status: Completed.
ABSTRACT
BACKGROUND: To determine an appropriate dose of, and immunization schedule for, a vaccine SCoK against COVID-19 for an efficacy study; herein, we conducted randomized controlled trials to assess the immunogenicity and safety of this vaccine in adults. METHODS: These randomized, double-blind, placebo-controlled phase 1 and 2 trials of vaccine SCoK were conducted in Binhai District, Yan City, Jiangsu Province, China. Younger and older adult participants in phase 1 and 2 trials were sequentially recruited into different groups to be intramuscularly administered 20 or 40 µg vaccine SCoK or placebo. Participants were enrolled into our phase 1 and 2 studies to receive vaccine or placebo. RESULTS: No serious vaccine-related adverse events were observed in either trial. In both trials, local and systemic adverse reactions were absent or mild in most participants. In our phase 1 and 2 studies, the vaccine induced significantly increased neutralizing antibody responses to pseudovirus and live SARS-CoV-2. The vaccine induced significant neutralizing antibody responses to live SARS-CoV-2 on day 14 after the last immunization, with NT50s of 80.45 and 92.46 in participants receiving 20 and 40 µg doses, respectively; the seroconversion rates were 95.83% and 100%. The vaccine SCoK showed a similar safety and immunogenicity profiles in both younger participants and older participants. The vaccine showed better immunogenicity in phase 2 than in phase 1 clinical trial. Additionally, the incidence of adverse reactions decreased significantly in phase 2 clinical trial. The vaccine SCoK was well tolerated and immunogenic.
Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2ABSTRACT
BACKGROUND: We assessed the safety and immunogenicity of a recombinant adenovirus type-5 (Ad5)-vectored coronavirus disease 2019 (COVID-19) vaccine with homologous prime-boost regimens in healthy participants aged ≥6 years. METHODS: In this randomized, double-blind, placebo-controlled trial, participants received vaccine or placebo 56 days apart. Enzyme-linked immunosorbent assay (ELISA) antibodies to the receptor binding domain (RBD) and pseudovirus neutralizing antibodies were detected. Adverse events were monitored for 28 days following each vaccination. RESULTS: A total of 430 participants were enrolled in the study, with 30 participants aged 18-55 years (MID cohort), 250 aged ≥56 years (OLD cohort), and 150 aged 6-17 years (MIN cohort). Ad5-vectored COVID-19 vaccine induced significant RBD-specific ELISA antibodies that decreased with increasing age, with geometric mean titers (GMTs) of 1037.5 in the MIN cohort, 647.2 in the MID cohort, and 338.0 in the OLD cohort receiving 5 × 1010 viral particles on day 28 following boost vaccination. Pseudovirus neutralizing antibodies showed a similar pattern, with GMTs of 168.0 in the MIN cohort, 76.8 in the MID cohort, and 79.7 in the OLD cohort. A single dose in children and adolescents induced higher antibody responses than that elicited by 2 doses in adults, with GMTs of 1091.6 and 96.6 for ELISA antibody and neutralizing antibody, respectively. Homologous prime-boost vaccination was safe and tolerable. CONCLUSIONS: Ad5-vectored COVID-19 vaccine with a single dose was safe and induced robust immune responses in children and adolescents aged 6-17 years. A prime-boost regimen needs further exploration for Ad5-vectored COVID-19 vaccine.Ad5-vectored COVID-19 vaccine with a single dose was safe and tolerated, and induced robust immune responses in children and adolescents aged 6-17 years. The boosting effect on immune responses of the homologous prime-boost regime given 56 days apart was limited. CLINICAL TRIALS REGISTRATION: NCT04566770.
Subject(s)
COVID-19 Vaccines , COVID-19 , Viral Vaccines , Adenoviridae/genetics , Adolescent , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Double-Blind Method , Healthy Volunteers , Humans , Immunogenicity, VaccineABSTRACT
BACKGROUND: The demonstration of batch-to-batch consistency is indispensable for quality control of vaccines. METHODS: We conducted a randomized, double-blind, parallel-controlled trial to evaluate the immunogenicity consistency of a single shot of Ad5-nCoV in healthy adults who had not previously received any COVID-19 vaccine. All eligible participants were randomly assigned equally to receive one of the three consecutive batches of Ad5-nCoV (5 × 1010 viral particles/vial, 0.5 mL). The primary endpoint was geometric mean titers (GMTs) of serum SARS-CoV-2 receptor-binding domain (RBD)-specific IgG on day 28 post-vaccination. RESULTS: One thousand fifty participants were enrolled, with 350 (33%) participants per group. On day 28 post-vaccination, GMTs in three groups were 78.3 binding antibody units (BAU)/mL (95% CI 70.3-87.3), 82.9 BAU/mL (73.9-92.9), and 78.8 BAU/mL (70.2-88.4), respectively. The two-sided 95% CIs for the GMT ratios between each pair of batches were all between 0.67 and 1.5. The highest incidence of solicited adverse reactions within 7 days post-vaccination was reported by batch 3 recipients (23.1% versus 15.1% in batch 1 recipients and 14.6% in bath 2 recipients; p = 0.0039). None of the serious adverse events were related to vaccination. CONCLUSIONS: Immunogenicity consistency between consecutive batches of Ad5-nCoV was well established in adults. CLINICAL TRIAL REGISTRATION: This trial was registered with ClinicalTrials.gov (NCT05313646).
Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Double-Blind Method , Immunoglobulin G , Adenoviridae , Immunogenicity, VaccineABSTRACT
CoronaVac, also known as the Sinovac inactivated SARS-CoV-2 vaccine, has been widely implemented in combating the COVID-19 pandemic. We summarized the results of clinical trials and real-world studies of CoronaVac in this review. The overall efficacy for the prevention of symptomatic COVID-19 (before the emergence of variants of concern) using two doses of 3 µg CoronaVac was 67.7% (95% CI, 35.9% to 83.7%). Effectiveness in preventing hospitalizations, ICU admissions, and deaths was more prominent than that in preventing COVID-19. A third dose inherited the effectiveness against non-variants of concern and increased effectiveness against severe COVID-19 outcomes caused by omicron variants compared to two doses. Most adverse reactions were mild. Few vaccine-related serious adverse reactions have been reported. Moreover, three-dose regimen significantly increased the seroconversion levels of neutralizing antibodies against omicron as compared to two-dose regimen. This review of CoronaVac may provide a scientific basis for optimizing global immunization strategies.
ABSTRACT
ABSTRACT: A large-scale vaccination of coronavirus disease-19 (COVID-19) in adults has been conducted for nearly a year, and there is a growing recognition that immunization for children is also essential. It has been months since emergency use of pediatric COVID-19 vaccine was approved, we reviewed the prevalence and transmission of COVID-19 in children. The prevalence of COVID-19 in children is reduced due to vaccination even in a Delta prevalent period, so an increase in the vaccination rate is needed in children. Although the precise role of children in the transmission requires more research to uncover, they likely played a significant role, according to the available literature. We also described four candidate COVID-19 vaccines for children on their safety and immunogenicity and the impact of severe acute respiratory syndrome coronavirus 2 variants on childhood vaccination. Safety issues on pediatric vaccines post-approval, like adverse events following immunization and adverse events of special interest require studies on long-term and effective regulatory mechanisms.
Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Child , Humans , SARS-CoV-2 , VaccinationABSTRACT
INTRODUCTION: BNT162b1 is a lipid nanoparticle-formulated, nucleoside-modified mRNA SARS-CoV-2 vaccine. Here, we report safety and immune persistence data following a primary two-dose vaccination schedule administered 21 days apart. METHODS: Immune persistence was determined at month 3 in 72 younger participants (aged 18-55 years) and at month 6 in 70 younger and 69 older participants (aged 65-85 years). RESULTS: In younger participants, neutralizing antibody (nAb) geometric mean titers (GMTs) for the 10 and 30 µg dose levels declined from 233 and 254 (21 days after dose 2) to 55 and 87 at month 3, respectively, and to 16 and 27 at month 6, respectively. In older participants, nAb GMTs declined from 80 and 160 (21 days after dose 2) to 10 and 21 at month 6. Overall, higher antibody titers were observed in younger participants, and the 30 µg dose induced higher levels of nAb, which declined more slowly by month 6. No serious adverse events were reported in the vaccine group. CONCLUSION: This study showed BNT162b1 maintains a favorable safety profile in younger and older participants in the 6 months after vaccination. This study further extends our understanding of immune persistence and the safety of the BNT162b1 vaccine as a candidate vaccine in the BioNTech pipeline. TRIAL REGISTRATION NUMBER: NCT04523571, registered August 21, 2020.
Subject(s)
BNT162 Vaccine , COVID-19 , Vaccines , Adult , Aged , Antibodies, Neutralizing , BNT162 Vaccine/adverse effects , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , China , Double-Blind Method , Humans , Liposomes , Nanoparticles , RNA, Messenger , SARS-CoV-2 , VaccinationABSTRACT
Numerous viral outbreaks have threatened us throughout history. Here, we demonstrated a nucleic acid-based antiviral strategy named AntiV-SGN. Unlike those CRISPR-mediated methods, AntiV-SGN has advantages of no targets' sequence limitation, such as protospacer adjacent motif (PAM) or protospacer flanking sequence (PFS), being universal for both DNA and RNA viruses. AntiV-SGN was composed of a FEN1 protein and specific hpDNAs targeting viruses' nucleic acid. Its antiviral ability was tested on SARS-CoV-2 and HBV respectively. Reporter assays in human cells first illustrated the feasibility of AntiV-SGN. Then, it was verified that AntiV-SGN destroyed about 50% of live RNAs of SARS-CoV-2 in Vero cells and 90% cccDNA of HBV in HepG2.2.15 cells. It was also able to remove viral DNA integrated into the host's genome. In the mouse model, AntiV-SGN can be used to significantly reduce HBV expression at a level of 90%. Actually, in some cases, when viruses mutate to eliminate PAM/PFS or hosts were infected by both DNA and RNA viruses, AntiV-SGN could be a choice. Collectively, this study provided a proof-of-concept antiviral strategy of AntiV-SGN, which has potential clinical value for targeting a wide variety of human pathogens, both known and newly identified.
Subject(s)
COVID-19 , Nucleic Acids , Viruses , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , DNA Viruses , Humans , Mice , RNA , SARS-CoV-2/genetics , Vero CellsABSTRACT
BACKGROUND: All currently available SARS-CoV-2 vaccines are administered by intramuscular injection. We aimed to evaluate the safety and immunogenicity of a live-attenuated influenza virus vector-based SARS-CoV-2 vaccine (dNS1-RBD) administered by intranasal spray in healthy adults. METHODS: We did double-blind, randomised, placebo-controlled phase 1 and 2 trials, followed by a phase 2 extension trial, at a single centre in Jiangsu, China. Healthy adults (≥18 years) who had negative serum or fingertip blood total antibody tests for SARS-CoV-2 (in phases 1 and 2), with no prevalent SARS-CoV-2 infection or history of infection and no SARS-CoV-2 vaccination history (in all three trials reported here), were enrolled. Participants were randomly allocated (4:1 in phase 1, 2:1 in phase 2, and 1:1 in the extension trial) to receive two intranasal doses of the dNS1-RBD vaccine or placebo on days 0 and 14 or, for half of the participants in phase 2, on days 0 and 21. To avoid cross-contamination during administration, vaccine and placebo recipients were vaccinated in separate rooms in the extension trial. The phase 1 primary outcome was safety (adverse events recorded on days 0-44; serious adverse events recorded from day 0 until 12 months after the second dose). In the phase 2 and extension trials, the primary immunogenicity outcomes were SARS-CoV-2-specific T-cell response in peripheral blood (measured by IFN-γ ELISpot), proportion of participants with positive conversion for SARS-CoV-2 receptor-binding domain (RBD)-specific IgG and secretory IgA (s-IgA) antibodies, and concentration of SARS-CoV-2 RBD IgG in serum and SARS-CoV-2 RBD s-IgA in the nasopharynx (measured by ELISA) at 1 month after the second dose in the per-protocol set for immunogenicity. χ2 test and Fisher's exact test were used to analyse categorical data, and t test and Wilcoxon rank sum test to compare the measurement data between groups. These trials were registered with the Chinese Clinical Trial Registry (ChiCTR2000037782, ChiCTR2000039715, and ChiCTR2100048316). FINDINGS: Between Sept 1, 2020, and July 4, 2021, 63, 724, and 297 participants without a history of SARS-CoV-2 vaccination were enrolled in the phase 1, phase 2, and extension trials, respectively. At least one adverse reaction after vaccination was reported in 133 (19%) of 684 participants in the vaccine groups. Most adverse reactions were mild. No vaccine-related serious adverse event was noted. Specific T-cell immune responses were observed in 211 (46% [95% CI 42-51]) of 455 vaccine recipients in the phase 2 trial, and in 48 (40% [31-49]) of 120 vaccine recipients compared with one (1% [0-5]) of 111 placebo recipients (p<0·0001) in the extension trial. Seroconversion for RBD-specific IgG was observed in 48 (10% [95% CI 8-13]) of 466 vaccine recipients in the phase 2 trial (geometric mean titre [GMT] 3·8 [95% CI 3·4-4·3] in responders), and in 31 (22% [15-29]) of 143 vaccine recipients (GMT 4·4 [3·3-5·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. 57 (12% [95% CI 9-16]) of 466 vaccine recipients had positive conversion for RBD-specific s-IgA (GMT 3·8 [95% CI 3·5-4·1] in responders) in the phase 2 trial, as did 18 (13% [8-19]) of 143 vaccine recipients (GMT 5·2 [4·0-6·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. INTERPRETATION: dNS1-RBD was well tolerated in adults. Weak T-cell immunity in peripheral blood, as well as weak humoral and mucosal immune responses against SARS-CoV-2, were detected in vaccine recipients. Further studies are warranted to verify the safety and efficacy of intranasal vaccines as a potential supplement to current intramuscular SARS-CoV-2 vaccine pools. Steps should be taken in future studies to reduce the potential for cross-contamination caused by the vaccine strain aerosol during administration. FUNDING: National Key Research and Development Program of China, National Science, Fujian Provincial Science, CAMS Innovation Fund for Medical Sciences, and Beijing Wantai Biological Pharmacy Enterprise.
Subject(s)
COVID-19 Vaccines , COVID-19 , Orthomyxoviridae , Viral Vaccines , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Vaccines, Attenuated/adverse effectsABSTRACT
BACKGROUND: Heterologous boost vaccination has been proposed as an option to elicit stronger and broader, or longer-lasting immunity. We assessed the safety and immunogenicity of heterologous immunization with a recombinant adenovirus type-5-vectored Coronavirus Disease 2019 (COVID-19) vaccine (Convidecia, hereafter referred to as CV) and a protein-subunit-based COVID-19 vaccine (ZF2001, hereafter referred to as ZF). METHODS AND FINDINGS: We conducted a randomized, observer-blinded, placebo-controlled trial, in which healthy adults aged 18 years or older, who have received 1 dose of Convidecia, with no history of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, were recruited in Jiangsu, China. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or placebo control (trivalent inactivated influenza vaccine (TIV)) administered at 28 days after priming, and received the third injection with ZF2001 at 5 months, referred to as CV/ZF/ZF (D0-D28-M5) and CV/ZF (D0-M5) regimen, respectively. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or TIV administered at 56 days after priming, and received the third injection with ZF2001 at 6 months, referred to as CV/ZF/ZF (D0-D56-M6) and CV/ZF (D0-M6) regimen, respectively. Participants and investigators were masked to the vaccine received but not to the boosting interval. Primary endpoints were the geometric mean titer (GMT) of neutralizing antibodies against wild-type SARS-CoV-2 and 7-day solicited adverse reactions. The primary analysis was done in the intention-to-treat population. Between April 7, 2021 and May 6, 2021, 120 eligible participants were randomly assigned to receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 28 days and 5 months post priming, and receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 56 days and 6 months post priming. Of them, 7 participants did not receive the third injection with ZF2001. A total of 26 participants (21.7%) reported solicited adverse reactions within 7 days post boost vaccinations, and all the reported adverse reactions were mild, with 13 (32.5%) in CV/ZF/ZF (D0-D28-M5) regimen, 7 (35.0%) in CV/ZF (D0- M5) regimen, 4 (10.0%) in CV/ZF/ZF (D0-D56-M6) regimen, and 2 (10.0%) in CV/ZF (D0-M6) regimen, respectively. At 14 days post first boost, GMTs of neutralizing antibodies in recipients receiving ZF2001 at 28 days and 56 days post priming were 18.7 (95% CI 13.7 to 25.5) and 25.9 (17.0 to 39.3), respectively, with geometric mean ratios of 2.0 (1.2 to 3.5) and 3.4 (1.8 to 6.4) compared to TIV. GMTs at 14 days after second boost of neutralizing antibodies increased to 107.2 (73.7 to 155.8) in CV/ZF/ZF (D0-D28-M5) regimen and 141.2 (83.4 to 238.8) in CV/ZF/ZF (D0-D56-M6) regimen. Two-dose schedules of CV/ZF (D0-M5) and CV/ZF (D0-M6) induced antibody levels comparable with that elicited by 3-dose schedules, with GMTs of 90.5 (45.6, 179.8) and 94.1 (44.0, 200.9), respectively. Study limitations include the absence of vaccine effectiveness in a real-world setting and current lack of immune persistence data. CONCLUSIONS: Heterologous boosting with ZF2001 following primary vaccination with Convidecia is more immunogenic than a single dose of Convidecia and is not associated with safety concerns. These results support flexibility in cooperating viral vectored and recombinant protein vaccines. TRIAL REGISTRATION: Study on Heterologous Prime-boost of Recombinant COVID-19 Vaccine (Ad5 Vector) and RBD-based Protein Subunit Vaccine; ClinicalTrial.gov NCT04833101.
Subject(s)
COVID-19 , Influenza Vaccines , Adenoviridae/genetics , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Immunogenicity, Vaccine , SARS-CoV-2 , Vaccination , Vaccines, Synthetic/adverse effectsABSTRACT
BACKGROUND: Large-scale vaccination against COVID-19 is being implemented in many countries with CoronaVac, an inactivated vaccine. We aimed to assess the immune persistence of a two-dose schedule of CoronaVac, and the immunogenicity and safety of a third dose of CoronaVac, in healthy adults aged 18 years and older. METHODS: In the first of two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials, adults aged 18-59 years in Jiangsu, China, were initially allocated (1:1) into two vaccination schedule cohorts: a day 0 and day 14 vaccination cohort (cohort 1) and a day 0 and day 28 vaccination cohort (cohort 2); each cohort was randomly assigned (2:2:1) to either a 3 µg dose or 6 µg dose of CoronaVac or a placebo group. Following a protocol amendment on Dec 25, 2020, half of the participants in each cohort were allocated to receive an additional dose 28 days (window period 30 days) after the second dose, and the other half were allocated to receive a third dose 6 months (window period 60 days) after the second dose. In the other phase 2 trial, in Hebei, China, participants aged 60 years and older were assigned sequentially to receive three injections of either 1·5 µg, 3 µg, or 6 µg of vaccine or placebo, administered 28 days apart for the first two doses and 6 months (window period 90 days) apart for doses two and three. The main outcomes of the study were geometric mean titres (GMTs), geometric mean increases (GMIs), and seropositivity of neutralising antibody to SARS-CoV-2 (virus strain SARS-CoV-2/human/CHN/CN1/2020, GenBank accession number MT407649.1), as analysed in the per-protocol population (all participants who completed their assigned third dose). Our reporting is focused on the 3 µg groups, since 3 µg is the licensed formulation. The trials are registered with ClinicalTrials.gov, NCT04352608 and NCT04383574. FINDINGS: 540 (90%) of 600 participants aged 18-59 years were eligible to receive a third dose, of whom 269 (50%) received the primary third dose 2 months after the second dose (cohorts 1a-14d-2m and 2a-28d-2m) and 271 (50%) received a booster dose 8 months after the second dose (cohorts 1b-14d-8m and 2b-28d-8m). In the 3 µg group, neutralising antibody titres induced by the first two doses declined after 6 months to near or below the seropositive cutoff (GMT of 8) for cohort 1b-14d-8m (n=53; GMT 3·9 [95% CI 3·1-5·0]) and for cohort 2b-28d-8m (n=49; 6·8 [5·2-8·8]). When a booster dose was given 8 months after a second dose, GMTs assessed 14 days later increased to 137·9 (95% CI 99·9-190·4) for cohort 1b-14d-8m and 143·1 (110·8-184·7) 28 days later for cohort 2b-28d-8m. GMTs moderately increased following a primary third dose, from 21·8 (95% CI 17·3-27·6) on day 28 after the second dose to 45·8 (35·7-58·9) on day 28 after the third dose in cohort 1a-14d-2m (n=54), and from 38·1 (28·4-51·1) to 49·7 (39·9-61·9) in cohort 2a-28d-2m (n=53). GMTs had decayed to near the positive threshold by 6 months after the third dose: GMT 9·2 (95% CI 7·1-12·0) in cohort 1a-14d-2m and 10·0 (7·3-13·7) in cohort 2a-28d-2m. Similarly, in adults aged 60 years and older who received booster doses (303 [87%] of 350 participants were eligible to receive a third dose), neutralising antibody titres had declined to near or below the seropositive threshold by 6 months after the primary two-dose series. A third dose given 8 months after the second dose significantly increased neutralising antibody concentrations: GMTs increased from 42·9 (95% CI 31·0-59·4) on day 28 after the second dose to 158·5 (96·6-259·2) on day 28 following the third dose (n=29). All adverse reactions reported within 28 days after a third dose were of grade 1 or 2 severity in all vaccination cohorts. There were three serious adverse events (2%) reported by the 150 participants in cohort 1a-14d-2m, four (3%) by 150 participants from cohort 1b-14d-8m, one (1%) by 150 participants in each of cohorts 2a-28d-2m and 2b-28d-8m, and 24 (7%) by 349 participants from cohort 3-28d-8m. INTERPRETATION: A third dose of CoronaVac in adults administered 8 months after a second dose effectively recalled specific immune responses to SARS-CoV-2, which had declined substantially 6 months after two doses of CoronaVac, resulting in a remarkable increase in the concentration of antibodies and indicating that a two-dose schedule generates good immune memory, and a primary third dose given 2 months after the second dose induced slightly higher antibody titres than the primary two doses. FUNDING: National Key Research and Development Program, Beijing Science and Technology Program, and Key Program of the National Natural Science Foundation of China. TRANSLATION: For the Mandarin translation of the abstract see Supplementary Materials section.
Subject(s)
COVID-19 , Adolescent , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Immunogenicity, Vaccine , Middle Aged , SARS-CoV-2 , Young AdultABSTRACT
BACKGROUND: The Ad5-nCoV vaccine is a single-dose adenovirus type 5 (Ad5) vectored vaccine expressing the SARS-CoV-2 spike protein that was well-tolerated and immunogenic in phase 1 and 2 studies. In this study, we report results on the final efficacy and interim safety analyses of the phase 3 trial. METHODS: This double-blind, randomised, international, placebo-controlled, endpoint-case driven, phase 3, clinical trial enrolled adults aged 18 years older at study centres in Argentina, Chile, Mexico, Pakistan, and Russia. Participants were eligible for the study if they had no unstable or severe underlying medical or psychiatric conditions; had no history of a laboratory-confirmed SARS-CoV-2 infection; were not pregnant or breastfeeding; and had no previous receipt of an adenovirus-vectored, coronavirus, or SARS-CoV-2 vaccine. After informed consent was obtained, 25 mL of whole blood was withdrawn from all eligible participants who were randomised in a 1:1 ratio to receive a single intramuscular dose of 0·5 mL placebo or a 0·5 mL dose of 5 × 1010 viral particle (vp)/mL Ad5-nCoV vaccine; study staff and participants were blinded to treatment allocation. All participants were contacted weekly by email, telephone, or text message to self-report any symptoms of COVID-19 illness, and laboratory testing for SARS-CoV-2 was done for all participants with any symptoms. The primary efficacy objective evaluated Ad5-nCoV in preventing symptomatic, PCR-confirmed COVID-19 infection occurring at least 28 days after vaccination in all participants who were at least 28 days postvaccination on Jan 15, 2021. The primary safety objective evaluated the incidence of any serious adverse events or medically attended adverse events postvaccination in all participants who received a study injection. This trial is closed for enrolment and is registered with ClinicalTrials.gov (NCT04526990). FINDINGS: Study enrolment began on Sept 22, 2020, in Pakistan, Nov 6, 2020, in Mexico, Dec 2, 2020, in Russia and Chile, and Dec 17, 2020, in Argentina; 150 endpoint cases were reached on Jan 15, 2021, triggering the final primary efficacy analysis. One dose of Ad5-nCoV showed a 57·5% (95% CI 39·7-70·0, p=0·0026) efficacy against symptomatic, PCR-confirmed, COVID-19 infection at 28 days or more postvaccination (21 250 participants; 45 days median duration of follow-up [IQR 36-58]). In the primary safety analysis undertaken at the time of the efficacy analysis (36 717 participants), there was no significant difference in the incidence of serious adverse events (14 [0·1%] of 18 363 Ad5-nCoV recipients and 10 [0·1%] of 18 354 placebo recipients, p=0·54) or medically attended adverse events (442 [2·4%] of 18 363 Ad5-nCoV recipients and 411 [2·2%] of 18 354 placebo recipients, p=0·30) between the Ad5-nCoV or placebo groups, or any serious adverse events considered related to the study product (none in both Ad5-nCoV and placebo recipients). In the extended safety cohort, 1004 (63·5%) of 1582 of Ad5-nCoV recipients and 729 (46·4%) of 1572 placebo recipients reported a solicited systemic adverse event (p<0·0001), of which headache was the most common (699 [44%] of Ad5-nCoV recipients and 481 [30·6%] of placebo recipients; p<0·0001). 971 (61·3%) of 1584 Ad5-nCoV recipients and 314 (20·0%) of 1573 placebo recipients reported an injection-site adverse event (p<0·0001), of which pain at the injection site was the most frequent; reported by 939 (59%) Ad5-nCoV recipients and 303 (19%) placebo recipients. INTERPRETATION: One dose of Ad5-nCoV is efficacious and safe in healthy adults aged 18 years and older. FUNDING: CanSino Biologics and the Beijing Institute of Biotechnology.
Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Double-Blind Method , Female , Follow-Up Studies , Humans , Immunogenicity, Vaccine , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination/methods , Young AdultABSTRACT
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants have been reported to be resistant to several neutralizing antibodies (NAbs) targeting Receptor Binding Domain (RBD) and N Terminal Domain (NTD) of spike (S) protein and thus inducing immune escape. However, fewer studies were carried out to investigate the neutralizing ability of S2-specific antibodies. In this research, 10 monoclonal antibodies (mAbs) targeting SARS-CoV-2 S2 subunit were generated from Coronavirus Disease 2019 (COVID-19) convalescent patients by phage display technology and molecular cloning technology. The binding activity of these S2-mAbs toward SARS-CoV-2 S, SARS-CoV-2 S2, SARS-CoV-2 RBD, SARS-CoV-2 NTD, severe acute respiratory syndrome coronavirus (SARS-CoV) S, SARS-CoV S2 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) S proteins were evaluated by enzyme-linked immunosorbent assay (ELISA). Their neutralizing potency toward SARS-CoV-2 wild-type (WT), B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.1.1 and B.1.621 variants were determined by pseudo-virus-based neutralization assay. Results showed that S2E7-mAb had cross-activity to S or S2 proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, while with limited neutralizing activity to pseudo-viruses of SARS-CoV-2 WT and variants. It is undeniable that the binding and neutralizing activities of the S2-targeting mAbs are significantly weaker than the previously reported antibodies targeting RBD and NTD, but our study may provide some evidences for understanding immune protection and identifying targets for vaccine design based on the conserved S2 subunit.