Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335175

ABSTRACT

Background Fatigue has an adaptive function and serves as a temporary signal to rest and save energy often in response to immune activation. It may, however, also persist in a pathological condition incurring significant burden. While subjective symptoms and scientific consensus indicate that both physical and mental determinants of motivated behavior are affected in fatigue, the underlying processes are rarely examined using objective, task-based indicators. Methods In three consecutive studies, including validation ( N = 48) and reliability assessments ( N = 27), we use an experimental task to jointly objectify reward learning and effort execution as two determinants of behavioral motivation. In addition, we tested how fatigue and its acute perturbation in response to immune activation after SARS-CoV-2 vaccination are linked to these task-based indicators of motivation in a longitudinal cross-over design ( N = 55). Results The validation study showed the utility of the experimental task for simultaneously assessing learning, effort exertion, and its regulation based on subjective confidence. The reliability assessment over a one-week period indicated that symptoms of fatigue and task behavior are highly reliable and that repetition effects have little impact on motivated behavior. Finally, in the vaccination trial, we found significant links between fatigue and task behavior. Baseline levels of fatigue predicted how effort is gauged in dependence of current confidence about reward outcomes, and state perturbations of fatigue in the context of the SARS-CoV-2 vaccination reduced confidence during learning. Importantly, task success was significantly lower in subjects who reported high fatigue at baseline and who additionally experienced stronger increase in fatigue in response to vaccination. Discussion Our results demonstrate that the experimental task allows to jointly assess determinants of motivated behavior, and to link its constituent processes to subjective fatigue. This suggests that our understanding of fatigue and its perturbation due to acute immune activation can benefit from objective, task-based indicators of the underlying motivational mechanisms. Future studies could build on these findings to further deepen the understanding of neurobehavioral mechanisms underlying fatigue in the context of immune activation.

2.
Vaccines (Basel) ; 10(5)2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1792355

ABSTRACT

Background: Due to findings on adverse reactions and clinical efficacy of different vaccinations against SARS-CoV-2, the administration of vaccination regimens containing both adenoviral vector vaccines and mRNA-based vaccines has become common. Data are still needed on the direct comparison of immunogenicity for these different regimens. Methods: We compared markers for immunogenicity (anti-S1 IgG/IgA, neutralizing antibodies, and T-cell response) with three different vaccination regimens (homologous ChAdOx1 nCoV-19 (n = 103), or mixture of ChAdOx1 nCoV-19 with mRNA-1273 (n = 116) or BNT162b2 (n = 105)) at two time points: the day of the second vaccination as a baseline and 14 days later. Results: All examined vaccination regimens elicited measurable immune responses that were significantly enhanced after the second dose. Homologous ChAdOx1 nCoV-19 was markedly inferior in immunogenicity to all other examined regimens after administration of the second dose. Between the heterologous regimens, mRNA-1273 as second dose induced greater antibody responses than BNT162b2, with no difference found for neutralizing antibodies and T-cell response. Discussion: While these findings allow no prediction about clinical protection, from an immunological point of view, vaccination against SARS-CoV-2 with an mRNA-based vaccine at one or both time points appears preferable to homologous vaccination with ChAdOx1 nCoV-19. Whether or not the demonstrated differences between the heterologous regimens are of clinical significance will be subject to further research.

3.
Front Immunol ; 13: 811020, 2022.
Article in English | MEDLINE | ID: covidwho-1674341

ABSTRACT

BACKGROUND: Heterologous vaccinations against SARS-CoV-2 with ChAdOx1 nCoV-19 and a second dose of an mRNA-based vaccine have been shown to be more immunogenic than homologous ChAdOx1 nCoV-19. In the current study, we examined the kinetics of the antibody response to the second dose of three different vaccination regimens (homologous ChAdOx1 nCoV-19 vs. ChAdOx1 nCoV-19 + BNT162b2 or mRNA-1273) against SARS-CoV-2 in a longitudinal manner; whether there are differences in latency or amplitude of the early response and which markers are most suitable to detect these responses. METHODS: We performed assays for anti-S1 IgG and IgA, anti-NCP IgG and a surrogate neutralization assay on serum samples collected from 57 participants on the day of the second vaccination as well as the following seven days. RESULTS: All examined vaccination regimens induced detectable antibody responses within the examined time frame. Both heterologous regimens induced responses earlier and with a higher amplitude than homologous ChAdOx1 nCoV-19. Between the heterologous regimens, amplitudes were somewhat higher for ChAdOx1 nCoV-19 + mRNA-1273. There was no difference in latency between the IgG and IgA responses. Increases in the surrogate neutralization assay were the first changes to be detectable for all regimens and the only significant change seen for homologous ChAdOx1 nCoV-19. DISCUSSION: Both examined heterologous vaccination regimens are superior in immunogenicity, including the latency of the response, to homologous ChAdOx1 nCoV-19. While the IgA response has a shorter latency than the IgG response after the first dose, no such difference was found after the second dose, implying that both responses are driven by separate plasma cell populations. Early and steep increases in surrogate neutralization levels suggest that this might be a more sensitive marker for antibody responses after vaccination against SARS-CoV-2 than absolute levels of anti-S1 IgG.


Subject(s)
/immunology , Antibodies, Neutralizing/blood , /immunology , Immunization, Secondary/methods , SARS-CoV-2/immunology , Adult , Age Factors , Antibodies, Viral/blood , Antibody Formation/immunology , COVID-19/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Middle Aged , Sex Factors , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Young Adult
4.
Dtsch Arztebl Int ; 118(42): 722, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1639608
5.
Brain Communications Vol 3(3), 2021, ArtID fcab195 ; 3(3), 2021.
Article in English | APA PsycInfo | ID: covidwho-1481579

ABSTRACT

Reports an error in "Clinical characteristics of headache after vaccination against COVID-19 (coronavirus SARS-CoV-2) with the BNT162b2 mRNA vaccine: A multicentre observational cohort study" by Carl H. Gobel, Axel Heinze, Sarah Karstedt, Mascha Morscheck, Lilian Tashiro, Anna Cirkel, Qutayba Hamid, Rabih Halwani, Mohamad-Hani Temsah, Malte Ziemann, Siegfried Gorg, Thomas Munte and Hartmut Gobel (Brain Communications, 2021[Jul][23], Vol 3[3][fcab169]). In the originally published version of this manuscript, the video abstract was missing. The video abstract is now available online. (The following abstract of the original article appeared in record 2021-82839-001). The novel coronavirus SARS-CoV-2 causes the infectious disease COVID-19. Newly developed mRNA vaccines can prevent the spread of the virus. Headache is the most common neurological symptom in over 50% of those vaccinated. Detailed information about the clinical characteristics of this form of headache has not yet been described. The aim of the study is to examine in detail the clinical characteristics of headaches occurring after vaccination against COVID-19 with the BNT162b2 mRNA COVID-19 vaccine for the first time. In a multicentre observational cohort study, data on the clinical features and corresponding variables were recorded using a standardized online questionnaire. The questionnaire was circulated to 12 000 residential care homes of the elderly as well as tertiary university hospitals in Germany and the United Arab Emirates. The primary outcomes of this study are the clinical features of headache after vaccination. Comorbidities, treatment with medication and sociodemographic variables are also analysed. A total of 2349 participants reported headaches after vaccination with the BNT162b2 mRNA COVID-19 vaccine. Headaches occur an average of 18.0 +/- 27.0 h after vaccination and last an average duration of 14.2 +/- 21.3 h. Only 9.7% of those affected also report headaches resulting from previous vaccinations. In 66.6% of the participants, headache occurs as a single episode. A bilateral location is indicated by 73.1% of the participants. This is most often found on the forehead (38.0%) and temples (32.1%). A pressing pain character is indicated by 49.2% and 40.7% report a dull pain character. The pain intensity is most often moderate (46.2%), severe (32.1%) or very severe (8.2%). The most common accompanying symptoms are fatigue (38.8%), exhaustion (25.7%) and muscle pain (23.4%). Headaches after COVID-19 vaccination show an extensive complex of symptoms. The constellation of accompanying symptoms together with the temporal and spatial headache characteristics delimit a distinctive headache phenotype. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

6.
Pain Ther ; 10(2): 1309-1330, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1326860

ABSTRACT

INTRODUCTION: The most frequently reported neurological adverse event of ChAdOx1 nCoV-19 (AZD1222) vaccine is headache in 57.5%. Several cases of cerebral venous thrombosis (CVT) have developed after vaccination. Headache is the leading symptom of CVT. For the differential diagnosis of headaches attributed to this vaccine and headaches attributed to CVT, it is of central clinical importance whether and, if so, how the phenotypes and course of these headaches can be differentiated. The study aims to examine in detail the phenotype of headache attributed to this vaccine. METHODS: Data on the clinical features and corresponding variables were recorded using a standardized online questionnaire in this multicenter observational cohort study. The primary outcomes of this study are the clinical features of headaches after vaccination. FINDINGS: A total of 2464 participants reported headaches after vaccination with the ChAdOx1 nCoV-19 (AZD1222) vaccine. On average, headaches occurred 14.5 ± 21.6 h after vaccination and lasted 16.3 ± 30.4 h. A bilateral location was described by 75.8% of participants. This is most often found on the forehead (40.0%) and temples (31.4%); 50.4% reported a pressing and 37.7% a dull pain character. Headache intensity was most often severe (38.7%), moderate (35.2%), or very severe (15.5%). Accompanying symptoms were most commonly fatigue (44.8%), chills (36.1%), exhaustion (34.9%), and fever (30.4%). CONCLUSION: Headaches attributed to COVID-19 vaccination with the ChAdOx1 nCoV-19 (AZD1222) vaccine demonstrate an extensive and characteristic complex of symptoms. The findings have several important clinical implications for the differentiation of post-vaccinal headache and other primary as well as secondary headaches.

SELECTION OF CITATIONS
SEARCH DETAIL