Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
mSystems ; 6(4): e0079321, 2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1350006


Wastewater-based surveillance has gained prominence and come to the forefront as a leading indicator of forecasting COVID-19 (coronavirus disease 2019) infection dynamics owing to its cost-effectiveness and its ability to inform early public health interventions. A university campus could especially benefit from wastewater surveillance, as universities are characterized by largely asymptomatic populations and are potential hot spots for transmission that necessitate frequent diagnostic testing. In this study, we employed a large-scale GIS (geographic information systems)-enabled building-level wastewater monitoring system associated with the on-campus residences of 7,614 individuals. Sixty-eight automated wastewater samplers were deployed to monitor 239 campus buildings with a focus on residential buildings. Time-weighted composite samples were collected on a daily basis and analyzed on the same day. Sample processing was streamlined significantly through automation, reducing the turnaround time by 20-fold and exceeding the scale of similar surveillance programs by 10- to 100-fold, thereby overcoming one of the biggest bottlenecks in wastewater surveillance. An automated wastewater notification system was developed to alert residents to a positive wastewater sample associated with their residence and to encourage uptake of campus-provided asymptomatic testing at no charge. This system, integrated with the rest of the "Return to Learn" program at the University of California (UC) San Diego-led to the early diagnosis of nearly 85% of all COVID-19 cases on campus. COVID-19 testing rates increased by 1.9 to 13× following wastewater notifications. Our study shows the potential for a robust, efficient wastewater surveillance system to greatly reduce infection risk as college campuses and other high-risk environments reopen. IMPORTANCE Wastewater-based epidemiology can be particularly valuable at university campuses where high-resolution spatial sampling in a well-controlled context could not only provide insight into what affects campus community as well as how those inferences can be extended to a broader city/county context. In the present study, a large-scale wastewater surveillance was successfully implemented on a large university campus enabling early detection of 85% of COVID-19 cases thereby averting potential outbreaks. The highly automated sample processing to reporting system enabled dramatic reduction in the turnaround time to 5 h (sample to result time) for 96 samples. Furthermore, miniaturization of the sample processing pipeline brought down the processing cost significantly ($13/sample). Taken together, these results show that such a system could greatly ameliorate long-term surveillance on such communities as they look to reopen.

Am J Cardiol ; 136: 149-155, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-764150


The impact of statins, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers (ARBs) on coronavirus disease 2019 (COVID-19) severity and recovery is important given their high prevalence of use among individuals at risk for severe COVID-19. We studied the association between use of statin/angiotensin-converting enzyme inhibitors/ARB in the month before hospital admission, with risk of severe outcome, and with time to severe outcome or disease recovery, among patients hospitalized for COVID-19. We performed a retrospective single-center study of all patients hospitalized at University of California San Diego Health between February 10, 2020 and June 17, 2020 (n = 170 hospitalized for COVID-19, n = 5,281 COVID-negative controls). Logistic regression and competing risks analyses were used to investigate progression to severe disease (death or intensive care unit admission), and time to discharge without severe disease. Severe disease occurred in 53% of COVID-positive inpatients. Median time from hospitalization to severe disease was 2 days; median time to recovery was 7 days. Statin use prior to admission was associated with reduced risk of severe COVID-19 (adjusted OR 0.29, 95%CI 0.11 to 0.71, p < 0.01) and faster time to recovery among those without severe disease (adjusted HR for recovery 2.69, 95%CI 1.36 to 5.33, p < 0.01). The association between statin use and severe disease was smaller in the COVID-negative cohort (p for interaction = 0.07). There was potential evidence of faster time to recovery with ARB use (adjusted HR 1.92, 95%CI 0.81 to 4.56). In conclusion, statin use during the 30 days prior to admission for COVID-19 was associated with a lower risk of developing severe COVID-19, and a faster time to recovery among patients without severe disease.

Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus , Coronavirus Infections/epidemiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Pneumonia, Viral/epidemiology , Adult , Aged , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Critical Care , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Recovery of Function , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index