Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Environ Res Public Health ; 19(12)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1896860

ABSTRACT

BACKGROUND: Since the outbreak of the COVID-19 pandemic, healthcare workers (HCWs) have been faced with specific stressors endangering their physical and mental health and their functioning. This study aimed to assess the short-term psychological health of a sample of Italian HCWs and the related influencing factors. In particular, the study focused on the differences related to HCWs' gender and to having been directly in charge of COVID-19 patients or not. METHODS: An online survey was administered to the whole staff of the Modena General University Hospital three months after the onset of the pandemic, in 2020. Demographic data and changes in working and living conditions related to COVID-19 were collected; mental health status was assessed by the Depression, Anxiety and Stress Scale (DASS-21) and the Impact of Event Scale-Revised (IES-R). RESULTS: 1172 out of 4788 members returned the survey (response rate = 24.5%), the male/female ratio was 30/70%. Clinically significant symptoms assessed according to the DASS-21 emerged among 21.0% of the respondents for depression, 22.5% for anxiety and 27.0% for stress. Symptoms suggestive of a traumatic reaction were reported by 19.0% of the sample. Symptoms of psychological distress were statistically associated with female gender, job role, ward, changes in lifestyle, whereas first-line work with COVID-19 patients was statistically associated with more stress symptoms. HCWs reported a significant level of psychological distress that could reach severe clinical significance and impact dramatically their quality of life and functioning. CONCLUSIONS: Considering the persistence of the international emergency, effective strategies to anticipate, recognize and address distress in HCWs are essential, also because they may impact the organization and effectiveness of healthcare systems.


Subject(s)
COVID-19 , Pandemics , Anxiety/psychology , COVID-19/epidemiology , Depression/psychology , Female , Health Personnel/psychology , Hospitals, General , Humans , Male , Quality of Life , SARS-CoV-2
2.
J Clin Med ; 11(11)2022 May 27.
Article in English | MEDLINE | ID: covidwho-1869661

ABSTRACT

The SARS-CoV-2 infection has caused over 422 million contagions and 5.8 million deaths resulting in a global health crisis. Several studies have investigated the risk factors predisposing to the infection and reported that the host susceptibility can be linked to the ABO blood group, but the current evidence is controversial. We systematically searched for articles in EMBASE, PubMed, and Cochrane library published up to 7 May 2021 to explore the association of the ABO blood group with the susceptibility to SARS-CoV-2 infection. All studies in people undergoing SARS-CoV-2 test controls were included. Odds ratios were obtained in each study and then synthesised by using meta-analysis. Overall, 22 articles were selected and more than 1,200,000 individuals of whom 74,563 resulted positive to SARS-CoV-2 and 1,166,717 resulted negative, were included in the meta-analysis. Overall, 487,985 subjects had blood group A, 151,879 had group B, 52,621 had group AB, and 548,795 had group O. Group O was slightly less associated with infection, as compared to the other three blood groups (OR = 0.91, 95% CI = 0.85-0.99, p = 0.02). Conversely, group A was slightly more associated with infection, as compared to the other three groups (OR = 1.06, 95% CI = 1.00-1.13, p = 0.04). This meta-analysis shows associations between blood groups and SARS-CoV-2 infection and supports the hypothesis that blood type O may have a slightly lower risk of infection, whereas blood type A may have a slightly higher risk of infection.

3.
PLoS One ; 16(8): e0251378, 2021.
Article in English | MEDLINE | ID: covidwho-1354756

ABSTRACT

BACKGROUND: The benefit of tocilizumab on mortality and time to recovery in people with severe COVID pneumonia may depend on appropriate timing. The objective was to estimate the impact of tocilizumab administration on switching respiratory support states, mortality and time to recovery. METHODS: In an observational study, a continuous-time Markov multi-state model was used to describe the sequence of respiratory support states including: no respiratory support (NRS), oxygen therapy (OT), non-invasive ventilation (NIV) or invasive mechanical ventilation (IMV), OT in recovery, NRS in recovery. RESULTS: Two hundred seventy-one consecutive adult patients were included in the analyses contributing to 695 transitions across states. The prevalence of patients in each respiratory support state was estimated with stack probability plots, comparing people treated with and without tocilizumab since the beginning of the OT state. A positive effect of tocilizumab on the probability of moving from the invasive and non-invasive mechanical NIV/IMV state to the OT in recovery state (HR = 2.6, 95% CI = 1.2-5.2) was observed. Furthermore, a reduced risk of death was observed in patients in NIV/IMV (HR = 0.3, 95% CI = 0.1-0.7) or in OT (HR = 0.1, 95% CI = 0.0-0.8) treated with tocilizumab. CONCLUSION: To conclude, we were able to show the positive impact of tocilizumab used in different disease stages depicted by respiratory support states. The use of the multi-state Markov model allowed to harmonize the heterogeneous mortality and recovery endpoints and summarize results with stack probability plots. This approach could inform randomized clinical trials regarding tocilizumab, support disease management and hospital decision making.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Respiratory Therapy/methods , Aged , Female , Humans , Male , Markov Chains , Middle Aged , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiration, Artificial , Time Factors , Treatment Outcome
4.
BMJ Open ; 11(2): e036616, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-1228874

ABSTRACT

INTRODUCTION: In patients with septic shock, low levels of circulating immunoglobulins are common and their kinetics appear to be related to clinical outcome. The pivotal role of immunoglobulins in the host immune response to infection suggests that additional therapy with polyclonal intravenous immunoglobulins may be a promising option in patients with septic shock. Immunoglobulin preparations enriched with the IgM component have largely been used in sepsis, mostly at standard dosages (250 mg/kg per day), regardless of clinical severity and without any dose adjustment based on immunoglobulin serum titres or other biomarkers. We hypothesised that a personalised dose of IgM enriched preparation based on patient IgM titres and aimed to achieve a specific threshold of IgM titre is more effective in decreasing mortality than a standard dose. METHODS AND ANALYSIS: The study is designed as a multicentre, interventional, randomised, single-blinded, prospective, investigator sponsored, two-armed study. Patients with septic shock and IgM titres <60 mg/dL will be randomly assigned to an IgM titre-based treatment or a standard treatment group in a ratio of 1:1. The study will involve 12 Italian intensive care units and 356 patients will be enrolled. Patients assigned to the IgM titre-based treatment will receive a personalised daily dose based on an IgM serum titre aimed at achieving serum titres above 100 mg/dL up to discontinuation of vasoactive drugs or day 7 after enrolment. Patients assigned to the IgM standard treatment group will receive IgM enriched preparation daily for three consecutive days at the standard dose of 250 mg/kg. The primary endpoint will be all-cause mortality at 28 days. ETHICS AND DISSEMINATION: The study protocol was approved by the ethics committees of the coordinating centre (Comitato Etico dell'Area Vasta Emilia Nord) and collaborating centres. The results of the trial will be published within 12 months from the end of the study and the steering committee has the right to present them at public symposia and conferences. TRIAL REGISTRATION DETAILS: The trial protocol and information documents have received a favourable opinion from the Area Vasta Emilia Nord Ethical Committee on 12 September 2019. The trial protocol has been registered on EudraCT (2018-001613-33) on 18 April 2018 and on ClinicalTrials.gov (NCT04182737) on 2 December 2019.


Subject(s)
COVID-19 , Shock, Septic , Humans , Immunization, Passive , Immunoglobulin M , Prospective Studies , SARS-CoV-2 , Shock, Septic/drug therapy , Treatment Outcome
5.
Pulmonology ; 2021 Mar 22.
Article in English | MEDLINE | ID: covidwho-1144904

ABSTRACT

BACKGROUND/MATERIALS AND METHODS: This retrospective cohort study was conducted in two teaching hospitals over a 3-month period (March 2010-June 2020) comparing severe and critical COVID-19 patients admitted to Respiratory Intensive Care Unit for non-invasive respiratory support (NRS) and subjected to awake prone position (PP) with those receiving standard care (SC). Primary outcome was endotracheal intubation (ETI) rate. In-hospital mortality, time to ETI, tracheostomy, length of RICU and hospital stay served as secondary outcomes. Risk factors associated to ETI among PP patients were also investigated. RESULTS: A total of 114 patients were included, 76 in the SC and 38 in the PP group. Unadjusted Kaplan-Meier estimates showed greater effect of PP compared to SC on ETI rate (HR = 0.45 95% CI [0.2-0.9], p = 0.02) even after adjustment for baseline confounders (HR = 0.59 95% CI [0.3-0.94], p = 0.03). After stratification according to non-invasive respiratory support, PP showed greater significant benefit for those on High Flow Nasal Cannulae (HR = 0.34 95% CI [0.12-0.84], p = 0.04). Compared to SC, PP patients also showed a favorable difference in terms of days free from respiratory support, length of RICU and hospital stay while mortality and tracheostomy rate were not significantly different. CONCLUSIONS: Prone positioning in awake and spontaneously breathing Covid-19 patients is feasible and associated with a reduction of intubation rate, especially in those patients undergoing HFNC. Although our results are intriguing, further randomized controlled trials are needed to answer all the open questions remaining pending about the real efficacy of PP in this setting.

6.
Sci Rep ; 11(1): 4954, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1114727

ABSTRACT

The prophylactic vaccines available to protect against infections by HPV are well tolerated and highly immunogenic. People with HIV have a higher risk of developing HPV infection and HPV-associated cancers due to a lower immune response, and due to viral interactions. We performed a systematic review of RCTs to assess HPV vaccines efficacy and safety on HIV-infected people compared to placebo or no intervention in terms of seroconversion, infections, neoplasms, adverse events, CD4+ T-cell count and HIV viral load. The vaccine-group showed a seroconversion rate close to 100% for each vaccine and a significantly higher level of antibodies against HPV vaccine types, as compared to the placebo group (MD = 4333.3, 95% CI 2701.4; 5965.1 GMT EL.U./ml for HPV type 16 and MD = 1408.8, 95% CI 414.8; 2394.7 GMT EL.U./ml for HPV type 18). There were also no differences in terms of severe adverse events (RR = 0.6, 95% CI 0.2; 1.6) and no severe adverse events (RR = 0.6, 95% CI 0.9; 1.2) between vaccine and placebo groups. Secondary outcomes, such as CD4 + T-cell count and HIV viral load, did not differ between groups (MD = 14.8, 95% CI - 35.1; 64.6 cells/µl and MD = 0.0, 95% CI - 0.3; 0.3 log10 RNA copies/ml, respectively). Information on the remaining outcomes was scarce and that did not allow us to combine the data. The results support the use of the HPV vaccine in HIV-infected patients and highlight the need of further RCTs assessing the effectiveness of the HPV vaccine on infections and neoplasms.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/immunology , Patient Safety , Adolescent , Adult , Antibodies, Viral , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/virology , Female , Humans , Male , Papillomavirus Infections/virology , Papillomavirus Vaccines/adverse effects , Public Health , Randomized Controlled Trials as Topic , Risk , Treatment Outcome , Viral Load , Virus Shedding , Young Adult
7.
Trials ; 21(1): 724, 2020 Aug 17.
Article in English | MEDLINE | ID: covidwho-717548

ABSTRACT

OBJECTIVES: To assess the hypothesis that an adjunctive therapy with methylprednisolone and unfractionated heparin (UFH) or with methylprednisolone and low molecular weight heparin (LMWH) are more effective in reducing any-cause mortality in critically-ill ventilated patients with pneumonia from SARS-CoV-2 infection compared to LMWH alone. TRIAL DESIGN: The study is designed as a multi-centre, interventional, parallel group, superiority, randomized, investigator sponsored, three arms study. Patients, who satisfy all inclusion criteria and no exclusion criteria, will be randomly assigned to one of the three treatment groups in a ratio 1:1:1. PARTICIPANTS: Inpatients will be recruited from 8 Italian Academic and non-Academic Intensive Care Units INCLUSION CRITERIA (ALL REQUIRED): 1. Positive SARS-CoV-2 diagnostic (on pharyngeal swab of deep airways material) 2. Positive pressure ventilation (either non-invasive or invasive) from > 24 hours 3. Invasive mechanical ventilation from < 96 hours 4. PaO2/FiO2 ratio lower than 150 mmHg 5. D-dimer level > 6 times the upper limit of normal reference range 6. C-reactive Protein > 6-fold upper the limit of normal reference range EXCLUSION CRITERIA: 1. Age < 18 years 2. On-going treatment with anticoagulant drugs 3. Platelet count < 100.000/mm3 4. History of heparin-induced thrombocytopenia 5. Allergy to sodium enoxaparin or other LMWH, UFH or methylprednisolone 6. Active bleeding or on-going clinical condition deemed at high risk of bleeding contraindicating anticoagulant treatment 7. Recent (in the last 1 month prior to randomization) brain, spinal or ophthalmic surgery 8. Chronic assumption or oral corticosteroids 9. Pregnancy or breastfeeding or positive pregnancy test. In childbearing age women, before inclusion, a pregnancy test will be performed if not available 10. Clinical decision to withhold life-sustaining treatment or "too sick to benefit" 11. Presence of other severe diseases impairing life expectancy (e.g. patients are not expected to survive 28 days given their pre-existing medical condition) 12. Lack or withdrawal of informed consent INTERVENTION AND COMPARATOR: • LMWH group: patients in this group will be administered enoxaparin at standard prophylactic dosage. • LMWH + steroid group: patients in this group will receive enoxaparin at standard prophylactic dosage and methylprednisolone. • UFH + steroid group: patients in this group will receive UFH at therapeutic dosages and methylprednisolone. UFH will be administered intravenously in UFH + steroid group at therapeutic doses. The infusion will be started at an infusion rate of 18 UI/kg/hour and then modified to obtain aPTT Ratio in between the range of 1.5-2.0. aPTT will be periodically checked at intervals no longer than 12 hours. The treatment with UFH will be administered up to ICU discharge. After ICU discharge anticoagulant therapy may be interrupted or switched to prophylaxis with LMWH in the destination ward up to clinical judgement of the attending physician. Enoxaparin will be administered in both LMWH group and LMWH + steroid group at standard prophylactic dose (i.e., 4000 UI once day, increased to 6000 UI once day for patients weighting more than 90 kg). The treatment will be administered subcutaneously once a day up to ICU discharge. After ICU discharge it may be continued or interrupted in the destination ward up to clinical judgement of the attending physician. Methylprednisolone will be administered in both LMWH + steroid group and UHF + steroid group intravenously with an initial bolus of 0,5 mg/kg followed by administration of 0,5 mg/kg 4 times daily for 7 days, 0,5 mg/kg 3 times daily from day 8 to day 10, 0,5 mg/kg 2 times daily at days 11 and 12 and 0,5 mg/kg once daily at days 13 and 14. MAIN OUTCOMES: Primary Efficacy Endpoint: All-cause mortality at day 28 Secondary Efficacy Endpoints: - Ventilation free days (VFDs) at day 28, defined as the total number of days that patient is alive and free of ventilation (either invasive or non-invasive) between randomization and day 28 (censored at hospital discharge). - Need of rescue administration of high-dose steroids or immune-modulatory drugs; - Occurrence of switch from non-invasive to invasive mechanical ventilation during ICU stay; - Delay from start of non-invasive ventilation to switch to invasive ventilation; - All-cause mortality at ICU discharge and hospital discharge; - ICU free days (IFDs) at day 28, defined as the total number of days between ICU discharge and day 28. - Occurrence of new infections from randomization to day 28; including infections by Candida, Aspergillus, Adenovirus, Herpes Virus e Cytomegalovirus - Occurrence of new organ dysfunction and grade of dysfunction during ICU stay. - Objectively confirmed venous thromboembolism, stroke or myocardial infarction; Safety endpoints: - Occurrence of major bleeding, defined as transfusion of 2 or more units of packed red blood cells in a day, bleeding that occurs in at least one of the following critical sites [intracranial, intra-spinal, intraocular (within the corpus of the eye; thus, a conjunctival bleed is not an intraocular bleed), pericardial, intra-articular, intramuscular with compartment syndrome, or retroperitoneal], bleeding that necessitates surgical intervention and bleeding that is fatal (defined as a bleeding event that was the primary cause of death or contributed directly to death); - Occurrence of clinically relevant non-major bleeding, defined ad acute clinically overt bleeding that does not meet the criteria for major and consists of any bleeding compromising hemodynamic; spontaneous hematoma larger than 25 cm2, intramuscular hematoma documented by ultrasonography, haematuria that was macroscopic and was spontaneous or lasted for more than 24 hours after invasive procedures; haemoptysis, hematemesis or spontaneous rectal bleeding requiring endoscopy or other medical intervention or any other bleeding requiring temporary cessation of a study drug. RANDOMIZATION: A block randomisation will be used with variable block sizes (block size 4-6-8), stratified by 3 factors: Centre, BMI (<30/≥30) and Age (<75/≥75). Central randomisation will be performed using a secure, web-based, randomisation system with an allocation ratio of 1:1:1. The allocation sequence will be generated by the study statistician using computer generated random numbers. BLINDING (MASKING): Participants to the study will be blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The target sample size is based on the hypothesis that the combined use of UHF and steroid versus the LMWH group will significantly reduce the risk of death at day 28. The overall sample size in this study is expected to be 210 with a randomization 1:1:1 and seventy patients in each group. Assuming an alpha of 2.5% (two tailed) and mortality rate in LMWH group of 50%, as indicated from initial studies of ICU patients, the study will have an 80% power to detect at least a 25 % absolute reduction in the risk of death between: a) LMHW + steroid group and LMWH group or b) UHF + steroid group and LMWH group. The study has not been sized to assess the difference between LMHW + steroid group and UHF + steroid group, therefore the results obtained from this comparison will need to be interpreted with caution and will need further adequately sized studies confirm the effect. On the basis of a conservative estimation, that 8 participating sites admit an average of 3 eligible patients per month per centre (24 patients/month). Assuming that 80 % of eligible patients are enrolled, recruitment of 210 participants will be completed in approximately 10 months. TRIAL STATUS: Protocol version 1.1 of April 26th, 2020. Recruitment start (expected): September 1st, 2020 Recruitment finish (expected): June 30th, 2021 TRIAL REGISTRATION: EudraCT number 2020-001921-30 , registered on April 15th, 2020 AIFA approval on May 4th, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Critical Illness , Heparin/administration & dosage , Methylprednisolone/administration & dosage , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Respiration, Artificial , Adult , COVID-19 , Heparin/adverse effects , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Methylprednisolone/adverse effects , Pandemics , Partial Thromboplastin Time , SARS-CoV-2
8.
Trials ; 21(1): 574, 2020 Jun 26.
Article in English | MEDLINE | ID: covidwho-617182

ABSTRACT

OBJECTIVES: To assess whether high doses of Low Molecular Weight Heparin (LMWH) (i.e. Enoxaparin 70 IU/kg twice daily) compared to standard prophylactic dose (i.e., Enoxaparin 4000 IU once day), in hospitalized patients with COVID19 not requiring Invasive Mechanical Ventilation [IMV], are: a)more effective in preventing clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first: 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were receiving standard oxygen therapy5.IMV in patients who at randomisation were receiving non-invasive mechanical ventilationb)Similar in terms of major bleeding risk TRIAL DESIGN: Multicentre, randomised controlled, superiority, open label, parallel group, two arms (1:1 ratio), in-hospital study. PARTICIPANTS: Inpatients will be recruited from 7 Italian Academic and non-Academic Internal Medicine Units, 2 Infectious Disease Units and 1 Respiratory Disease Unit. INCLUSION CRITERIA (ALL REQUIRED): 1. Age > 18 and < 80 years 2. Positive SARS-CoV-2 diagnostic (on pharyngeal swab of deep airways material) 3. Severe pneumonia defined by the presence of at least one of the following criteria: a.Respiratory Rate ≥25 breaths /minb.Arterial oxygen saturation≤93% at rest on ambient airc.PaO2/FiO2 ≤300 mmHg 4. Coagulopathy, defined by the presence of at least one of the following criteria: a.D-dimer >4 times the upper level of normal reference rangeb.Sepsis-Induced Coagulopathy (SIC) score >4 5. No need of IMV EXCLUSION CRITERIA: 1. Age <18 and >80 years 2. IMV 3. Thrombocytopenia (platelet count < 80.000 mm3) 4. Coagulopathy: INR >1.5, aPTT ratio > 1.4 5. Impaired renal function (eGFR calculated by CKD-EPI Creatinine equation < 30 ml/min) 6. Known hypersensitivity to enoxaparin 7. History of heparin induced thrombocytopenia 8. Presence of an active bleeding or a pathology susceptible of bleeding in presence of anticoagulation (e.g. recent haemorrhagic stroke, peptic ulcer, malignant cancer at high risk of haemorrhage, recent neurosurgery or ophthalmic surgery, vascular aneurysms, arteriovenous malformations) 9. Concomitant anticoagulant treatment for other indications (e.g. atrial fibrillation, venous thromboembolism, prosthetic heart valves) 10. Concomitant double antiplatelet therapy 11. Administration of therapeutic doses of LMWH, fondaparinux, or unfractionated heparin (UFH) for more than 72 hours before randomization; prophylactic doses are allowed 12. Pregnancy or breastfeeding or positive pregnancy test 13. Presence of other severe diseases impairing life expectancy (e.g. patients are not expected to survive 28 days given their pre-existing medical condition) 14. Lack or withdrawal of informed consent INTERVENTION AND COMPARATOR: Control Group (Low-Dose LMWH): patients in this group will be administered Enoxaparin (Inhixa®) at standard prophylactic dose (i.e., 4000 UI subcutaneously once day). Intervention Group (High-Dose LMWH): patients in this group will be administered Enoxaparin (Inhixa®) at dose of 70 IU/kg every 12 hours, as reported in the following table. This dose is commonly used in Italy when a bridging strategy is required for the management of surgery or invasive procedures in patients taking anti-vitamin K oral anticoagulants Body Weight (kg)Enoxaparin dose every 12 hours (IU)<50200050-69400070-89600090-1108000>11010000 The treatment with Enoxaparin will be initiated soon after randomization (maximum allowed starting time 12h after randomization). The treatment will be administered every 12 hours in the intervention group and every 24 hours in the control group. Treatments will be administered in the two arms until hospital discharge or the primary outcomes detailed below occur. MAIN OUTCOMES: Primary Efficacy Endpoint: Clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first: 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were in standard oxygen therapy by delivery interfaces5.Need for IMV, in patients who at randomisation were in Cpap or NIV Time to the occurrence of each of these events will be recorded. Clinical worsening will be analysed as a binary outcome as well as a time-to-event one. Secondary Efficacy Endpoints: Any of the following events occurring within the hospital stay 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were in standard oxygen therapy by delivery interfaces5.Need for IMV in patients who at randomisation were in Cpap or NIV6.Improvement of laboratory parameters of disease severity, including: o D-dimer levelo Plasma fibrinogen levelso Mean Platelet Volumeo Lymphocyte/Neutrophil ratioo IL-6 plasma levels MORTALITY AT 30 DAYS: Information about patients' status will be sought in those who are discharged before 30 days on Day 30 from randomisation. Time to the occurrence of each of these events will be recorded. Each of these events will be analysed as a binary outcome and as a time-to-event one. Primary safety endpoint: Major bleeding, defined as an acute clinically overt bleeding associated with one or more of the following: Decrease in haemoglobin of 2 g/dl or more;Transfusion of 2 or more units of packed red blood cells;Bleeding that occurs in at least one of the following critical sites [intracranial, intraspinal, intraocular (within the corpus of the eye; thus, a conjunctival bleed is not an intraocular bleed), pericardial, intra-articular, intramuscular with compartment syndrome, or retroperitoneal];Bleeding that is fatal (defined as a bleeding event that was the primary cause of death or contributed directly to death);Bleeding that necessitates surgical intervention Time to the occurrence of each of these events will be recorded. Each of these events will be analysed as a binary outcome and as a time-to-event one. Secondary safety endpoint: Clinically Relevant non-major bleeding, defined as an acute clinically overt bleeding that does not meet the criteria for major and consists of: 1.Any bleeding compromising hemodynamic2.Spontaneous hematoma larger than 25 cm2, or 100 cm2 if there was a traumatic cause3.Intramuscular hematoma documented by ultrasonography4.Epistaxis or gingival bleeding requiring tamponade or other medical intervention5.Bleeding from venipuncture for >5 minutes6.Haematuria that was macroscopic and was spontaneous or lasted for more than 24 hours after invasive procedures7.Haemoptysis, hematemesis or spontaneous rectal bleeding requiring endoscopy or other medical intervention8.Any other bleeding requiring temporary cessation of a study drug. Time to the occurrence of each of these events will be recorded. Each of these events will be analysed as a binary outcome and as a time-to-event one. RANDOMISATION: Randomisation (with a 1:1 randomisation ratio) will be centrally performed by using a secure, web-based system, which will be developed by the Methodological and Statistical Unit at the Azienda Ospedaliero-Universitaria of Modena. Randomisation stratified by 4 factors: 1) Gender (M/F); 2) Age (<75/≥75 years); 3) BMI (<30/≥30); 4) Comorbidities (0-1/>2) with random variable block sizes will be generated by STATA software. The web-based system will guarantee the allocation concealment. Blinding (masking) The study is conceived as open-label: patients and all health-care personnel involved in the study will be aware of the assigned group. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The target sample size is based on the hypothesis that LMWH administered at high doses versus low doses will significantly reduce the risk of clinical worsening. The overall sample size in this study is expected to be 300 with 150 in the Low-Dose LMWH control group and 150 in the High-Dose LMWH intervention group, recruited over 10-11 months. Assuming an alpha of 5% (two tailed) and a percentage of patients who experience clinical worsening in the control group being between 25% and 30%, the study will have 80% power to detect at least 50% relative reduction in the risk of death between low and high doses of heparin. TRIAL STATUS: Protocol version 1.2 of 11/05/2020. Recruitment start (expected): 08/06/2020 Recruitment finish (expected): 30/04/2021 Trial registration EudraCT 2020-001972-13, registered on April 17th, 2020 Full protocol The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anticoagulants/therapeutic use , Betacoronavirus , Blood Coagulation Disorders/drug therapy , Coronavirus Infections/drug therapy , Heparin, Low-Molecular-Weight/therapeutic use , Heparin/therapeutic use , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Adolescent , Adult , Aged , COVID-19 , Heparin/adverse effects , Heparin, Low-Molecular-Weight/adverse effects , Hospitalization , Humans , Middle Aged , Pandemics , Respiration, Artificial , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL