Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Sci Immunol ; : eabo0535, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1736021

ABSTRACT

SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. Here, we used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated monocytes and macrophages in the bronchoalveolar lavage (BAL) were found on days 3-4 post-infection. Virus-specific effector CD8+ and CD4+ T cells became detectable in the BAL and lung tissue on days 7-10, after viral RNA, radiologic evidence of lung inflammation, and IFN-activated myeloid cells had substantially declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs of rhesus macaques prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of antigen-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19.

2.
PLoS Pathog ; 18(1): e1010161, 2022 01.
Article in English | MEDLINE | ID: covidwho-1703195

ABSTRACT

The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.


Subject(s)
COVID-19/etiology , Disease Models, Animal , SARS-CoV-2 , Age Factors , Animals , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Comorbidity , Humans , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
3.
J Infect Dis ; 225(7): 1118-1123, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1702896

ABSTRACT

B-cell-depleting therapies may lead to prolonged disease and viral shedding in individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and this viral persistence raises concern for viral evolution. We report sequencing of early and late samples from a 335-day infection in an immunocompromised patient. The virus accumulated a unique deletion in the amino-terminal domain of the spike protein, and complete deletion of ORF7b and ORF8, the first report of its kind in an immunocompromised patient. Unique viral mutations found in this study highlight the importance of analyzing viral evolution in protracted SARS-CoV-2 infection, especially in immunosuppressed hosts.


Subject(s)
COVID-19 , SARS-CoV-2 , B-Lymphocytes , Humans , Immunocompromised Host , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Shedding
4.
Cell Rep Med ; 3(3): 100549, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1677212

ABSTRACT

The COVID-19 pandemic has seen clinical development and use of antiviral therapies at an unprecedented speed. Antiviral therapies have greatly improved the clinical outcome in COVID-19 patients, especially when administered early after diagnosis. Here, we discuss the successes and challenges of COVID-19 antiviral therapies and lessons for future pandemics.


Subject(s)
COVID-19 , Influenza, Human , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Forecasting , Humans , Influenza, Human/drug therapy , Pandemics
5.
Antiviral Res ; 198: 105246, 2022 02.
Article in English | MEDLINE | ID: covidwho-1639070

ABSTRACT

The utility of remdesivir treatment in COVID-19 patients is currently limited by the necessity to administer this antiviral intravenously, which has generally limited its use to hospitalized patients. Here, we tested a novel, subcutaneous formulation of remdesivir in the rhesus macaque model of SARS-CoV-2 infection that was previously used to establish the efficacy of remdesivir against this virus in vivo. Compared to vehicle-treated animals, macaques treated with subcutaneous remdesivir from 12 h through 6 days post inoculation showed reduced signs of respiratory disease, a reduction of virus replication in the lower respiratory tract, and an absence of interstitial pneumonia. Thus, early subcutaneous administration of remdesivir can protect from lower respiratory tract disease caused by SARS-CoV-2.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Lung Diseases, Interstitial/prevention & control , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/therapeutic use , Administration, Cutaneous , Alanine/administration & dosage , Alanine/pharmacokinetics , Alanine/therapeutic use , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Disease Models, Animal , Female , Lung/pathology , Lung/virology , Macaca mulatta , Male , Viral Load/drug effects , Virus Replication/drug effects
6.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1637974

ABSTRACT

Advanced age is a key predictor of severe COVID-19. To gain insight into this relationship, we used the rhesus macaque model of SARS-CoV-2 infection. Eight older and eight younger macaques were inoculated with SARS-CoV-2. Animals were evaluated using viral RNA quantification, clinical observations, thoracic radiographs, single-cell transcriptomics, multiparameter flow cytometry, multiplex immunohistochemistry, cytokine detection, and lipidomics analysis at predefined time points in various tissues. Differences in clinical signs, pulmonary infiltrates, and virus replication were limited. Transcriptional signatures of inflammation-associated genes in bronchoalveolar lavage fluid at 3 dpi revealed efficient mounting of innate immune defenses in both cohorts. However, age-specific divergence of immune responses emerged during the post-acute phase. Older animals exhibited sustained local inflammatory innate responses, whereas local effector T-cell responses were induced earlier in the younger animals. Circulating lipid mediator and cytokine levels highlighted increased repair-associated signals in the younger animals, and persistent pro-inflammatory responses in the older animals. In summary, despite similar disease outcomes, multi-omics profiling suggests that age may delay or impair antiviral cellular immune responses and delay efficient return to immune homeostasis.


Subject(s)
Aging/immunology , COVID-19/immunology , COVID-19/veterinary , SARS-CoV-2/immunology , Acute Disease , Animals , Antibody Formation/immunology , Bronchoalveolar Lavage Fluid , COVID-19/complications , COVID-19/genetics , Cytokines/blood , Gene Expression Regulation , Gene Regulatory Networks , Genomics , Immunity, Cellular/genetics , Immunomodulation , Inflammation/complications , Inflammation/pathology , Lung/immunology , Lung/pathology , Lung/virology , Lymphoid Tissue/pathology , Macaca mulatta/immunology , Macaca mulatta/virology , Models, Biological , Single-Cell Analysis , T-Lymphocytes/immunology , Transcription, Genetic
7.
Vet Pathol ; : 3009858211067468, 2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-1582697

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an emergent, amphixenotic infection that resulted in a pandemic declaration in March 2020. A rapid search for appropriate animal models of this newly emergent viral respiratory disease focused initially on traditional nonhuman primate research species. Nonhuman primate models have previously been shown to be valuable in evaluation of emerging respiratory coronaviruses with pandemic potential (ie, SARS-CoV and Middle East respiratory syndrome coronavirus). In this article, we review the pulmonary histopathologic characteristics and immunohistochemical evaluation of experimental SARS-CoV-2 infection in the rhesus macaque, pigtail macaque, African green monkey, and squirrel monkey. Our results indicate that all evaluated nonhuman primate species developed variably severe histopathologic changes typical of coronavirus respiratory disease characterized by interstitial pneumonia with or without syncytial cell formation, alveolar fibrin, and pulmonary edema that progressed to type II pneumocyte hyperplasia. Lesion distribution was multifocal, frequently subpleural, and often more severe in lower lung lobes. However, squirrel monkeys showed the least severe and least consistent lesions of the evaluated nonhuman primates. Additionally, our results highlight the disparate physical relationship between viral antigen and foci of pulmonary lesions. While classic respiratory coronaviral lesions were observed in the lungs of all nonhuman primates evaluated, none of the primates exhibited severe lesions or evidence of diffuse alveolar damage and therefore are unlikely to represent the severe form of SARS-CoV-2 infection observed in fatal human cases.

8.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294709

ABSTRACT

We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observed a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 did not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals did not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus was detected in lungs of vaccinated animals. Histopathological evaluation showed extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.

9.
Sci Adv ; 7(43): eabj3627, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1483968

ABSTRACT

The emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors. Here, we compared variants of concern (VOC) B.1.1.7 and B.1.351 to a recent B.1 SARS-CoV-2 isolate containing the D614G spike substitution in the rhesus macaque model. B.1.1.7 behaved similarly to D614G with respect to clinical disease and replication in the respiratory tract. Inoculation with B.1.351 resulted in lower clinical scores, lower lung virus titers, and less severe lung lesions. In bronchoalveolar lavages, cytokines and chemokines were up-regulated on day 4 in animals inoculated with D614G and B.1.1.7 but not with B.1.351. In nasal samples, cytokines and chemokines were up-regulated only in the B.1.1.7-inoculated animals. Together, our study suggests that circulation under diverse evolutionary pressures favors transmissibility and immune evasion rather than increased pathogenicity.

10.
Nat Commun ; 12(1): 5868, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462005

ABSTRACT

We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observe a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 do not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals do not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus can be detected in lungs of vaccinated animals. Histopathological evaluation shows extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Administration, Intranasal , Amino Acid Substitution , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Female , Lung/immunology , Lung/pathology , Lung/virology , Mesocricetus , Spike Glycoprotein, Coronavirus/immunology , Vaccination
11.
Viruses ; 13(9)2021 09 09.
Article in English | MEDLINE | ID: covidwho-1411084

ABSTRACT

A variety of immunolabeling procedures for both light and electron microscopy were used to examine the cellular origins of the host membranes supporting the SARS-CoV-2 replication complex. The endoplasmic reticulum has long been implicated as a source of membrane for the coronavirus replication organelle. Using dsRNA as a marker for sites of viral RNA synthesis, we provide additional evidence supporting ER as a prominent source of membrane. In addition, we observed a rapid fragmentation of the Golgi apparatus which is visible by 6 h and complete by 12 h post-infection. Golgi derived lipid appears to be incorporated into the replication organelle although protein markers are dispersed throughout the infected cell. The mechanism of Golgi disruption is undefined, but chemical disruption of the Golgi apparatus by brefeldin A is inhibitory to viral replication. A search for an individual SARS-CoV-2 protein responsible for this activity identified at least five viral proteins, M, S, E, Orf6, and nsp3, that induced Golgi fragmentation when expressed in eukaryotic cells. Each of these proteins, as well as nsp4, also caused visible changes to ER structure as shown by correlative light and electron microscopy (CLEM). Collectively, these results imply that specific disruption of the Golgi apparatus is a critical component of coronavirus replication.


Subject(s)
Endoplasmic Reticulum/virology , Golgi Apparatus/virology , SARS-CoV-2/physiology , Virus Replication , Animals , Chlorocebus aethiops , Coronavirus M Proteins/physiology , Coronavirus M Proteins/ultrastructure , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/ultrastructure , Humans , Intracellular Membranes/ultrastructure , Intracellular Membranes/virology , Microscopy, Electron , SARS-CoV-2/ultrastructure , Vero Cells , Viral Structural Proteins/physiology , Viral Structural Proteins/ultrastructure
13.
Nat Microbiol ; 6(10): 1245-1258, 2021 10.
Article in English | MEDLINE | ID: covidwho-1380902

ABSTRACT

Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.


Subject(s)
Bronchoalveolar Lavage Fluid/microbiology , COVID-19/therapy , Respiration, Artificial , SARS-CoV-2/pathogenicity , Adaptive Immunity , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Load , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/microbiology , COVID-19/mortality , Critical Illness , Female , Hospitalization , Humans , Immunity, Innate , Male , Microbiota , Middle Aged , Odds Ratio , Prognosis , Prospective Studies , Respiratory System/immunology , Respiratory System/microbiology , Respiratory System/virology , SARS-CoV-2/immunology , Viral Load
14.
Emerg Microbes Infect ; 10(1): 1284-1292, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1268056

ABSTRACT

The circulation of SARS-CoV-2 has resulted in the emergence of variants of concern (VOCs). It is currently unclear whether the previous infection with SARS-CoV-2 provides protection against reinfection with VOCs. Here, we show that low dose aerosol exposure to hCoV-19/human/USA/WA-CDC-WA1/2020 (WA1, lineage A), resulted in a productive mild infection. In contrast, a low dose of SARS-CoV-2 via fomites did not result in productive infection in the majority of exposed hamsters and these animals remained non-seroconverted. After recovery, hamsters were re-exposed to hCoV-19/South African/KRISP-K005325/2020 (VOC B.1.351) via an intranasal challenge. Seroconverted rechallenged animals did not lose weight and shed virus for three days. They had a little infectious virus and no pathology in the lungs. In contrast, shedding, weight loss and extensive pulmonary pathology caused by B.1.351 replication were observed in the non-seroconverted animals. The rechallenged seroconverted animals did not transmit the virus to naïve sentinels via direct contact transmission, in contrast to the non-seroconverted animals. Reinfection with B.1.351 triggered an anamnestic response that boosted not only neutralizing titres against lineage A, but also titres against B.1.351. Our results confirm that aerosol exposure is a more efficient infection route than fomite exposure. Furthermore, initial infection with SARS-CoV-2 lineage A does not prevent heterologous reinfection with B.1.351 but prevents disease and onward transmission. These data suggest that previous SARS-CoV-2 exposure induces partial protective immunity. The reinfection generated a broadly neutralizing humoral response capable of effectively neutralizing B.1.351 while maintaining its ability to neutralize the virus to which the initial response was directed against.


Subject(s)
Broadly Neutralizing Antibodies/blood , COVID-19/immunology , Fomites/virology , SARS-CoV-2/pathogenicity , Sequence Analysis, RNA/methods , Animals , Antibodies, Viral/blood , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Female , High-Throughput Nucleotide Sequencing , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Seroconversion , Severity of Illness Index , Vero Cells , Viral Load , Virus Replication
15.
J Infect Dis ; 224(Supplement_1): S1-S21, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1263668

ABSTRACT

The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/virology , Drug Development , Humans , National Institutes of Health (U.S.) , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , United States , Virus Replication/drug effects
17.
PLoS Pathog ; 17(1): e1009195, 2021 01.
Article in English | MEDLINE | ID: covidwho-1034958

ABSTRACT

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , COVID-19/pathology , Keratin-18/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Female , Humans , Keratin-18/immunology , Lung/immunology , Lung/pathology , Lymphocytes/immunology , Macrophages/immunology , Male , Mice , Mice, Transgenic , Promoter Regions, Genetic , SARS-CoV-2/physiology , Trachea/immunology , Trachea/virology
18.
Sci Transl Med ; 13(578)2021 01 27.
Article in English | MEDLINE | ID: covidwho-1024212

ABSTRACT

Detailed knowledge about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is important for uncovering the viral and host factors that contribute to coronavirus disease 2019 (COVID-19) pathogenesis. Old-World nonhuman primates recapitulate mild to moderate cases of COVID-19, thereby serving as important pathogenesis models. We compared African green monkeys inoculated with infectious SARS-CoV-2 or irradiated, inactivated virus to study the dynamics of virus replication throughout the respiratory tract. Genomic RNA from the animals inoculated with the irradiated virus was found to be highly stable, whereas subgenomic RNA, an indicator of viral replication, was found to degrade quickly. We combined this information with single-cell RNA sequencing of cells isolated from the lung and lung-draining mediastinal lymph nodes and developed new analysis methods for unbiased targeting of important cells in the host response to SARS-CoV-2 infection. Through detection of reads to the viral genome, we were able to determine that replication of the virus in the lungs appeared to occur mainly in pneumocytes, whereas macrophages drove the inflammatory response. Monocyte-derived macrophages recruited to the lungs, rather than tissue-resident alveolar macrophages, were most likely to be responsible for phagocytosis of infected cells and cellular debris early in infection, with their roles switching during clearance of infection. Together, our dataset provides a detailed view of the dynamics of virus replication and host responses over the course of mild COVID-19 and serves as a valuable resource to identify therapeutic targets.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Lung/virology , SARS-CoV-2/physiology , Sequence Analysis, RNA , Single-Cell Analysis , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Bronchoalveolar Lavage Fluid/virology , COVID-19/genetics , Chlorocebus aethiops , DNA, Viral/genetics , Female , Genome, Viral/genetics , Inflammation/pathology , Lung/pathology , Lymph Nodes/pathology , Macrophages/pathology , Macrophages/virology , Male , Mediastinum/pathology , Transcription, Genetic , Viral Load , Virus Replication
20.
Res Sq ; 2020 Nov 24.
Article in English | MEDLINE | ID: covidwho-955189

ABSTRACT

Sensitive and specific SARS-CoV-2 antibody assays remain critical for community and hospital-based SARS-CoV-2 surveillance. Here, we developed and applied a multiplex microsphere-based immunoassay (MMIA) for COVD-19 antibody studies that incorporates spike protein trimers of SARS-CoV-2, SARS-CoV-1, MERS-CoV, and the seasonal human betacoronaviruses, HCoV-HKU1 and HCoV-OC43, that enables measurement of off-target pre-existing cross-reactive antibodies. The MMIA performances characteristics are: 98% sensitive and 100% specific for human subject samples collected as early as 10 days from symptom onset. The MMIA permitted the simultaneous identification of SARS-CoV-2 seroconversion and the induction of SARS-CoV-2 IgG antibody cross reactions to SARS-CoV-1 and MERS-CoV. Further, synchronous increases of HCoV-OC43 IgG antibody levels was detected with SARS-CoV-2 seroconversion in a subset of subjects for whom early infection sera were available prior to their SARS-CoV-2 seroconversion, suggestive of an HCoV-OC43 memory response triggered by SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL