Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Frontiers in Education ; 6:17, 2022.
Article in English | Web of Science | ID: covidwho-1690452

ABSTRACT

After the unprecedented changes experienced in higher education due to the Covid-19 pandemic, there is a need to integrate initial thoughts and reflective experience to decide on the way forward. This study aimed to reflect on, and make sense of the events related to South African higher education institutions HEIs at the onset of the COVID-19 pandemic by using the Cynefin framework. Data from a rapid review of online media at the onset of the Covid-19 pandemic and a collaborative autoethnography session 1 year since lockdowns were implemented are used to present perspectives for the sense-making process. This offers insights to both ends of the spectrum as it highlights the evolution of processes taking place at multiple levels from government policies to institutional practices, as well as how this impacted on both staff and students. The Cynefin framework demonstrated sense-making efforts in the disordered, to the chaotic, to the complex, then to the complicated and eventually to the simple domain. Each domain ushered in its peculiarities and highlighted the issues ranging from vulnerabilities experienced in the higher education sector, to trying to reconfigure the academic year, to dealing with wicked problems, to eventually relying on expert assistance to navigate the virtual university space. Trying to establish causality in the simple domain proved challenging as the information available during the time was sparse. Despite these challenges, the lessons learnt include the importance of the sense-making process among all academic staff, the significance of collaboration and team efforts and the need to adapt leadership and self-leadership approaches to the changed ways of working in higher education institutions.

2.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-296601

ABSTRACT

Background: By August 2021, South Africa experienced three SARS-CoV-2 waves;the second and third associated with emergence of Beta and Delta variants respectively. Methods: We conducted a prospective cohort study during July 2020-August 2021 in one rural and one urban community. Mid-turbinate nasal swabs were collected twice-weekly from household members irrespective of symptoms and tested for SARS-CoV-2 using real-time reverse transcription polymerase chain reaction (rRT-PCR). Serum was collected every two months and tested for anti-SARS-CoV-2 antibodies. Results: Among 115,759 nasal specimens from 1,200 members (follow-up rate 93%), 1976 (2%) were SARS-CoV-2-positive. By rRT-PCR and serology combined, 62% (749/1200) of individuals experienced >=1 SARS-CoV-2 infection episode, and 12% (87/749) experienced reinfection. Of 662 PCR-confirmed episodes with available data, 15% (n=97) were associated with >=1 symptom. Among 222 households, 200 (90%) had >=1 SARS-CoV-2-positive individual. Household cumulative infection risk (HCIR) was 25% (213/856). On multivariable analysis, accounting for age and sex, index case lower cycle threshold value (OR 3.9, 95%CI 1.7-8.8), urban community (OR 2.0,95%CI 1.1-3.9), Beta (OR 4.2, 95%CI 1.7-10.1) and Delta (OR 14.6, 95%CI 5.7-37.5) variant infection were associated with increased HCIR. HCIR was similar for symptomatic (21/110, 19%) and asymptomatic (195/775, 25%) index cases (p=0.165). Attack rates were highest in individuals aged 13-18 years and individuals in this age group were more likely to experience repeat infections and to acquire SARS-CoV-2 infection. People living with HIV who were not virally supressed were more likely to develop symptomatic illness, and shed SARS-CoV-2 for longer compared to HIV-uninfected individuals. Conclusions: In this study, 85% of SARS-CoV-2 infections were asymptomatic and index case symptom status did not affect HCIR, suggesting a limited role for control measures targeting symptomatic individuals. Increased household transmission of Beta and Delta variants, likely contributed to successive waves, with >60% of individuals infected by the end of follow-up. Research in context: Evidence before this study: Previous studies have generated wide-ranging estimates of the proportion of SARS-CoV-2 infections which are asymptomatic. A recent systematic review found that 20% (95% CI 3%-67%) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections remained asymptomatic throughout infection and that transmission from asymptomatic individuals was reduced. A systematic review and meta-analysis of 87 household transmission studies of SARS-CoV-2 found an estimated secondary attack rate of 19% (95% CI 16-22). The review also found that household secondary attack rates were increased from symptomatic index cases and that adults were more likely to acquire infection. As of December 2021, South Africa experienced three waves of SARS-CoV-2 infections;the second and third waves were associated with circulation of Beta and Delta variants respectively. SARS-CoV-2 vaccines became available in February 2021, but uptake was low in study sites reaching 5% fully vaccinated at the end of follow up. Studies to quantify the burden of asymptomatic infections, symptomatic fraction, reinfection frequency, duration of shedding and household transmission of SARS-CoV-2 from asymptomatically infected individuals have mostly been conducted as part of outbreak investigations or in specific settings. Comprehensive systematic community studies of SARS-CoV-2 burden and transmission including for the Beta and Delta variants are lacking, especially in low vaccination settings. Added value of this study: We conducted a unique detailed COVID-19 household cohort study over a 13 month period in South Africa, with real time reverse transcriptase polymerase chain reaction (rRT-PCR) testing twice a week irrespective of symptoms and bimonthly serology. By the end of the study in August 2021, 749 (62%) of 1200 individuals from 222 randomly sampled households in a rural and an urban community in South Africa had at least one confirmed SARS-CoV-2 infection, detected on rRT-PCR and/or serology, and 12% (87/749) experienced reinfection. Symptom data were analysed for 662 rRT-PCR-confirmed infection episodes that occurred >14 days after the start of follow-up (of a total of 718 rRT-PCR-confirmed episodes), of these, 15% (n=97) were associated with one or more symptoms. Among symptomatic indvidiausl, 9% (n=9) were hospitalised and 2% (n=2) died. Ninety percent (200/222) of included households, had one or more individual infected with SARS-CoV-2 on rRT-PCR and/or serology within the household. SARS-CoV-2 infected index cases transmitted the infection to 25% (213/856) of susceptible household contacts. Index case ribonucleic acid (RNA) viral load proxied by rRT-PCR cycle threshold value was strongly predictive of household transmission. Presence of symptoms in the index case was not associated with household transmission. Household transmission was four times greater from index cases infected with Beta variant and fifteen times greater from index cases infected with Delta variant compared to wild-type infection. Attack rates were highest in individuals aged 13-18 years and individuals in this age group were more likely to experience repeat infections and to acquire SARS-CoV-2 infection within households. People living with HIV (PLHIV) who were not virally supressed were more likely to develop symptomatic illness when infected with SARS-CoV-2, and shed SARS-CoV-2 for longer when compared to HIV-uninfected individuals. Implications of all the available evidence: We found a high rate of SARS-CoV-2 infection in households in a rural community and an urban community in South Africa, with the majority of infections being asymptomatic in individuals of all ages. Asymptomatic individuals transmitted SARS-CoV-2 at similar levels to symptomatic individuals suggesting that interventions targeting symptomatic individuals such as symptom-based testing and contact tracing of individuals tested because they report symptoms may have a limited impact as control measures. Increased household transmission of

3.
Cytokine Growth Factor Rev ; 63: 78-89, 2022 02.
Article in English | MEDLINE | ID: covidwho-1474466

ABSTRACT

The Covid-19 pandemic has spread rapidly across the globe, resulting in more than 3 million deaths worldwide. The symptoms of Covid-19 are usually mild and non-specific, however in some cases patients may develop acute respiratory distress syndrome (ARDS) and systemic inflammation. Individuals with inflammatory or immunocompromising illnesses, such as cancer, are more susceptible to develop ARDS and have higher rates of mortality. This is mediated through an initial hyperstimulated immune response which results in elevated levels of pro-inflammatory cytokines and a subsequent cytokine storm. This potentiates positive feedback loops which are unable to be balanced by anti-inflammatory mediators. Therefore, elevated levels of IL-1ß, as a result of NLRP3 inflammasome activation, as well as IL-6 and TNF-α amongst many others, contribute to the progression of various cancer types. Furthermore, Covid-19 progression is associated with the depletion of CD8+ and CD4+ T cells, B cell and natural killer cell numbers. Collectively, a Covid-19-dependent pro-inflammatory profile and immune suppression promotes the optimal microenvironment for tumourigenesis, initiation and immune evasion of malignant cells, tumour progression and metastasis as well as cancer recurrence. There are, however, therapeutic windows of opportunity that may combat both Covid-19 and cancer to improve patient outcomes.


Subject(s)
COVID-19 , Neoplasms , Cytokine Release Syndrome , Cytokines , Humans , Pandemics , SARS-CoV-2 , Tumor Microenvironment
4.
Eurosurveillance ; 26(29):10, 2021.
Article in English | Web of Science | ID: covidwho-1341599

ABSTRACT

Background In South Africa, COVID-19 control measures to prevent SARS-CoV-2 spread were initiated on 16 March 2020. Such measures may also impact the spread of other pathogens, including influenza virus and respiratory syncytial virus (RSV) with implications for future annual epidemics and expectations for the subsequent northern hemisphere winter. Methods We assessed the detection of influenza and RSV through facility-based syndromic surveillance of adults and children with mild or severe respiratory illness in South Africa from January to October 2020, and compared this with surveillance data from 2013 to 2019. Results Facility-based surveillance revealed a decline in influenza virus detection during the regular season compared with previous years. This was observed throughout the implementation of COVID-19 control measures. RSV detection decreased soon after the most stringent COVID-19 control measures commenced;however, an increase in RSV detection was observed after the typical season, following the reopening of schools and the easing of measures. Conclusion COVID-19 non-pharmaceutical interventions led to reduced circulation of influenza and RSV in South Africa. This has limited the country's ability to provide influenza virus strains for the selection of the annual influenza vaccine. Delayed increases in RSV case numbers may reflect the easing of COVID-19 control measures. An increase in influenza virus detection was not observed, suggesting that the measures may have impacted the two pathogens differently. The impact that lowered and/or delayed influenza and RSV circulation in 2020 will have on the intensity and severity of subsequent annual epidemics is unknown and warrants close monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL