Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Main subject
Document Type
Year range
Eur J Intern Med ; 102: 63-71, 2022 08.
Article in English | MEDLINE | ID: covidwho-1944883


BACKGROUND: The coronavirus disease 2019 (COVID-19) presents an urgent threat to global health. Prediction models that accurately estimate mortality risk in hospitalized patients could assist medical staff in treatment and allocating limited resources. AIMS: To externally validate two promising previously published risk scores that predict in-hospital mortality among hospitalized COVID-19 patients. METHODS: Two prospective cohorts were available; a cohort of 1028 patients admitted to one of nine hospitals in Lombardy, Italy (the Lombardy cohort) and a cohort of 432 patients admitted to a hospital in Leiden, the Netherlands (the Leiden cohort). The endpoint was in-hospital mortality. All patients were adult and tested COVID-19 PCR-positive. Model discrimination and calibration were assessed. RESULTS: The C-statistic of the 4C mortality score was good in the Lombardy cohort (0.85, 95CI: 0.82-0.89) and in the Leiden cohort (0.87, 95CI: 0.80-0.94). Model calibration was acceptable in the Lombardy cohort but poor in the Leiden cohort due to the model systematically overpredicting the mortality risk for all patients. The C-statistic of the CURB-65 score was good in the Lombardy cohort (0.80, 95CI: 0.75-0.85) and in the Leiden cohort (0.82, 95CI: 0.76-0.88). The mortality rate in the CURB-65 development cohort was much lower than the mortality rate in the Lombardy cohort. A similar but less pronounced trend was found for patients in the Leiden cohort. CONCLUSION: Although performances did not differ greatly, the 4C mortality score showed the best performance. However, because of quickly changing circumstances, model recalibration may be necessary before using the 4C mortality score.

COVID-19 , Adult , Hospital Mortality , Humans , Prognosis , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2
Clin Kidney J ; 13(4): 550-563, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1109189


BACKGROUND: Acute kidney injury (AKI) can affect hospitalized patients with coronavirus disease 2019 (COVID-19), with estimates ranging between 0.5% and 40%. We performed a systematic review and meta-analysis of studies reporting incidence, mortality and risk factors for AKI in hospitalized COVID-19 patients. METHODS: We systematically searched 11 electronic databases until 29 May 2020 for studies in English reporting original data on AKI and kidney replacement therapy (KRT) in hospitalized COVID-19 patients. Incidences of AKI and KRT and risk ratios for mortality associated with AKI were pooled using generalized linear mixed and random-effects models. Potential risk factors for AKI were assessed using meta-regression. Incidences were stratified by geographic location and disease severity. RESULTS: A total of 3042 articles were identified, of which 142 studies were included, with 49 048 hospitalized COVID-19 patients including 5152 AKI events. The risk of bias of included studies was generally low. The pooled incidence of AKI was 28.6% [95% confidence interval (CI) 19.8-39.5] among hospitalized COVID-19 patients from the USA and Europe (20 studies) and 5.5% (95% CI 4.1-7.4) among patients from China (62 studies), whereas the pooled incidence of KRT was 7.7% (95% CI 5.1-11.4; 18 studies) and 2.2% (95% CI 1.5-3.3; 52 studies), respectively. Among patients admitted to the intensive care unit, the incidence of KRT was 20.6% (95% CI 15.7-26.7; 38 studies). Meta-regression analyses showed that age, male sex, cardiovascular disease, diabetes mellitus, hypertension and chronic kidney disease were associated with the occurrence of AKI; in itself, AKI was associated with an increased risk of mortality, with a pooled risk ratio of 4.6 (95% CI 3.3-6.5). CONCLUSIONS: AKI and KRT are common events in hospitalized COVID-19 patients, with estimates varying across geographic locations. Additional studies are needed to better understand the underlying mechanisms and optimal treatment of AKI in these patients.