Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Genome Biol Evol ; 15(6)2023 06 01.
Article in English | MEDLINE | ID: covidwho-20235300

ABSTRACT

Comparing the evolution of distantly related viruses can provide insights into common adaptive processes related to shared ecological niches. Phylogenetic approaches, coupled with other molecular evolution tools, can help identify mutations informative on adaptation, although the structural contextualization of these to functional sites of proteins may help gain insight into their biological properties. Two zoonotic betacoronaviruses capable of sustained human-to-human transmission have caused pandemics in recent times (SARS-CoV-1 and SARS-CoV-2), although a third virus (MERS-CoV) is responsible for sporadic outbreaks linked to animal infections. Moreover, two other betacoronaviruses have circulated endemically in humans for decades (HKU1 and OC43). To search for evidence of adaptive convergence between established and emerging betacoronaviruses capable of sustained human-to-human transmission (HKU1, OC43, SARS-CoV-1, and SARS-CoV-2), we developed a methodological pipeline to classify shared nonsynonymous mutations as putatively denoting homoplasy (repeated mutations that do not share direct common ancestry) or stepwise evolution (sequential mutations leading towards a novel genotype). In parallel, we look for evidence of positive selection and draw upon protein structure data to identify potential biological implications. We find 30 candidate mutations, from which 4 (codon sites 18121 [nsp14/residue 28], 21623 [spike/21], 21635 [spike/25], and 23948 [spike/796]; SARS-CoV-2 genome numbering) further display evolution under positive selection and proximity to functional protein regions. Our findings shed light on potential mechanisms underlying betacoronavirus adaptation to the human host and pinpoint common mutational pathways that may occur during establishment of human endemicity.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Phylogeny , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation
3.
Oxf Open Immunol ; 3(1): iqac003, 2022.
Article in English | MEDLINE | ID: covidwho-2227884

ABSTRACT

SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.

4.
Oxford open immunology ; 3(1), 2022.
Article in English | EuropePMC | ID: covidwho-1939890

ABSTRACT

SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good—circulation of a fifth endemic ‘common cold’ coronavirus of potentially low virulence, the bad—a situation roughly comparable with seasonal flu, and the ugly—extensive diversification into serotypes with long-term high-level endemicity.

5.
Nat Commun ; 13(1): 2988, 2022 05 27.
Article in English | MEDLINE | ID: covidwho-1868005

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, can infect a wide range of mammals. Since its spread in humans, secondary host jumps of SARS-CoV-2 from humans to multiple domestic and wild populations of mammals have been documented. Understanding the extent of adaptation to these animal hosts is critical for assessing the threat that the spillback of animal-adapted SARS-CoV-2 into humans poses. We compare the genomic landscapes of SARS-CoV-2 isolated from animal species to that in humans, profiling the mutational biases indicative of potentially different selective pressures in animals. We focus on viral genomes isolated from mink (Neovison vison) and white-tailed deer (Odocoileus virginianus) for which multiple independent outbreaks driven by onward animal-to-animal transmission have been reported. We identify five candidate mutations for animal-specific adaptation in mink (NSP9_G37E, Spike_F486L, Spike_N501T, Spike_Y453F, ORF3a_L219V), and one in deer (NSP3a_L1035F), though they appear to confer a minimal advantage for human-to-human transmission. No considerable changes to the mutation rate or evolutionary trajectory of SARS-CoV-2 has resulted from circulation in mink and deer thus far. Our findings suggest that minimal adaptation was required for onward transmission in mink and deer following human-to-animal spillover, highlighting the 'generalist' nature of SARS-CoV-2 as a mammalian pathogen.


Subject(s)
COVID-19 , Deer , Animals , COVID-19/genetics , Host Adaptation , Humans , Pandemics , SARS-CoV-2/genetics
6.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: covidwho-1510600

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Memory T Cells/cytology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
7.
Infect Genet Evol ; 95: 105075, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401708

ABSTRACT

T-cell-mediated immunity to SARS-CoV-2-derived peptides in individuals unexposed to SARS-CoV-2 has been previously reported. This pre-existing immunity was suggested to largely derive from prior exposure to 'common cold' endemic human coronaviruses (HCoVs). To test this, we characterised the sequence homology of SARS-CoV-2-derived T-cell epitopes reported in the literature across the full proteome of the Coronaviridae family. 54.8% of these epitopes had no homology to any of the HCoVs. Further, the proportion of SARS-CoV-2-derived epitopes with any level of sequence homology to the proteins encoded by any of the coronaviruses tested is well-predicted by their alignment-free phylogenetic distance to SARS-CoV-2 (Pearson's r = -0.958). No coronavirus in our dataset showed a significant excess of T-cell epitope homology relative to the proportion of expected random matches, given their genetic similarity to SARS-CoV-2. Our findings suggest that prior exposure to human or animal-associated coronaviruses cannot completely explain the T-cell repertoire in unexposed individuals that recognise SARS-CoV-2 cross-reactive epitopes.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronaviridae/immunology , Disease Resistance , Immunologic Memory , SARS-CoV-2/immunology , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Asymptomatic Diseases , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Chiroptera/virology , Coronaviridae/classification , Coronaviridae/genetics , Coronaviridae/pathogenicity , Cross Reactions , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Eutheria/virology , Humans , Immunity, Cellular , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/virology
8.
Curr Opin Virol ; 50: 40-48, 2021 10.
Article in English | MEDLINE | ID: covidwho-1306916

ABSTRACT

The scale of the international efforts to sequence SARS-CoV-2 genomes is unprecedented. Early availability of genomes allowed rapid characterisation of the virus, thus kickstarting many highly successful vaccine development programmes. Worldwide genomic resources have provided a good understanding of the pandemic, supported close monitoring of the emergence of viral genomic diversity and pinpointed those sites to prioritise for functional characterisation. Continued genomic surveillance of global viral populations will be crucial to inform the timing of vaccine updates so as to pre-empt the spread of immune escape lineages. While genome sequencing has provided us with an exceptionally powerful tool to monitor the evolution of SARS-CoV-2, there is room for further improvements in particular in the form of less heterogeneous global surveillance and tools to rapidly identify concerning viral lineages.


Subject(s)
COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , Cell Lineage , Evolution, Molecular , Humans , Mutation
9.
Microb Genom ; 7(6)2021 06.
Article in English | MEDLINE | ID: covidwho-1280188

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the COVID-19 pandemic, continues to cause a significant public-health burden and disruption globally. Genomic epidemiology approaches point to most countries in the world having experienced many independent introductions of SARS-CoV-2 during the early stages of the pandemic. However, this situation may change with local lockdown policies and restrictions on travel, leading to the emergence of more geographically structured viral populations and lineages transmitting locally. Here, we report the first SARS-CoV-2 genomes from Palestine sampled from early March 2020, when the first cases were observed, through to August of 2020. SARS-CoV-2 genomes from Palestine fall across the diversity of the global phylogeny, consistent with at least nine independent introductions into the region. We identify one locally predominant lineage in circulation represented by 50 Palestinian SARS-CoV-2, grouping with genomes generated from Israel and the UK. We estimate the age of introduction of this lineage to 05/02/2020 (16/01/2020-19/02/2020), suggesting SARS-CoV-2 was already in circulation in Palestine predating its first detection in Bethlehem in early March. Our work highlights the value of ongoing genomic surveillance and monitoring to reconstruct the epidemiology of COVID-19 at both local and global scales.


Subject(s)
Arabs , COVID-19/epidemiology , SARS-CoV-2/classification , Sequence Analysis, RNA/methods , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Israel , Middle East/epidemiology , Pandemics , Phylogeny , Phylogeography , SARS-CoV-2/genetics , United Kingdom
11.
Nat Commun ; 11(1): 5986, 2020 11 25.
Article in English | MEDLINE | ID: covidwho-947534

ABSTRACT

COVID-19 is caused by the coronavirus SARS-CoV-2, which jumped into the human population in late 2019 from a currently uncharacterised animal reservoir. Due to this recent association with humans, SARS-CoV-2 may not yet be fully adapted to its human host. This has led to speculations that SARS-CoV-2 may be evolving towards higher transmissibility. The most plausible mutations under putative natural selection are those which have emerged repeatedly and independently (homoplasies). Here, we formally test whether any homoplasies observed in SARS-CoV-2 to date are significantly associated with increased viral transmission. To do so, we develop a phylogenetic index to quantify the relative number of descendants in sister clades with and without a specific allele. We apply this index to a curated set of recurrent mutations identified within a dataset of 46,723 SARS-CoV-2 genomes isolated from patients worldwide. We do not identify a single recurrent mutation in this set convincingly associated with increased viral transmission. Instead, recurrent mutations currently in circulation appear to be evolutionary neutral and primarily induced by the human immune system via RNA editing, rather than being signatures of adaptation. At this stage we find no evidence for significantly more transmissible lineages of SARS-CoV-2 due to recurrent mutations.


Subject(s)
COVID-19/transmission , Genetic Fitness , Host-Pathogen Interactions/genetics , Mutation Rate , SARS-CoV-2/genetics , Alleles , Animals , COVID-19/epidemiology , COVID-19/virology , Genome, Viral/genetics , Humans , Pandemics , Phylogeny , RNA Editing , RNA, Viral/genetics , SARS-CoV-2/pathogenicity , Species Specificity
12.
Infect Genet Evol ; 83: 104351, 2020 09.
Article in English | MEDLINE | ID: covidwho-175956

ABSTRACT

SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 5 2020, and thousands of genomes have been sequenced since this date. This resource allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its novel human host, providing information to direct drug and vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the emergence of genomic diversity over time. Our results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely invariant to date, and others that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (>15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genetic Variation , Genome, Viral , Pneumonia, Viral/virology , Adaptation, Physiological/genetics , Antiviral Agents , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Humans , Likelihood Functions , Mutation , Pandemics , Phylogeny , SARS-CoV-2 , Viral Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL