Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Commun Biol ; 4(1): 631, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1283664


IL22 is an important cytokine involved in the intestinal defense mechanisms against microbiome. By using ileum-derived organoids, we show that the expression of anti-microbial peptides (AMPs) and anti-viral peptides (AVPs) can be induced by IL22. In addition, we identified a bacterial and a viral route, both leading to IL22 production by T cells, but via different pathways. Bacterial products, such as LPS, induce enterocyte-secreted SAA1, which triggers the secretion of IL6 in fibroblasts, and subsequently IL22 in T cells. This IL22 induction can then be enhanced by macrophage-derived TNFα in two ways: by enhancing the responsiveness of T cells to IL6 and by increasing the expression of IL6 by fibroblasts. Viral infections of intestinal cells induce IFNß1 and subsequently IL7. IFNß1 can induce the expression of IL6 in fibroblasts and the combined activity of IL6 and IL7 can then induce IL22 expression in T cells. We also show that IL22 reduces the expression of viral entry receptors (e.g. ACE2, TMPRSS2, DPP4, CD46 and TNFRSF14), increases the expression of anti-viral proteins (e.g. RSAD2, AOS, ISG20 and Mx1) and, consequently, reduces the viral infection of neighboring cells. Overall, our data indicates that IL22 contributes to the innate responses against both bacteria and viruses.

Interleukins/biosynthesis , Interleukins/metabolism , Animals , Anti-Bacterial Agents/metabolism , Antiviral Agents/metabolism , Cell Culture Techniques , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Enterocytes/immunology , Enterocytes/metabolism , Female , Fibroblasts/immunology , Fibroblasts/metabolism , Interleukins/immunology , Intestinal Mucosa/metabolism , Intestines/physiology , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Myeloid Cells/metabolism , Organoids/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Article in English | MEDLINE | ID: covidwho-921845


RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.

Protein Biosynthesis , RNA Viruses/physiology , Virus Replication/physiology , Cell Line, Tumor , Cell Survival , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferons/metabolism , RNA Transport , RNA, Viral/genetics , Reproducibility of Results , Single Molecule Imaging , Time Factors