Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nature Communications ; 13(1):2442-2442, 2022.
Article in English | PMC | ID: covidwho-1821586

ABSTRACT

Interferon restricts SARS-CoV-2 replication in cell culture, but only a handful of Interferon Stimulated Genes with antiviral activity against SARS-CoV-2 have been identified. Here, we describe a functional CRISPR/Cas9 screen aiming at identifying SARS-CoV-2 restriction factors. We identify DAXX, a scaffold protein residing in PML nuclear bodies known to limit the replication of DNA viruses and retroviruses, as a potent inhibitor of SARS-CoV-2 and SARS-CoV replication in human cells. Basal expression of DAXX is sufficient to limit the replication of SARS-CoV-2, and DAXX over-expression further restricts infection. DAXX restricts an early, post-entry step of the SARS-CoV-2 life cycle. DAXX-mediated restriction of SARS-CoV-2 is independent of the SUMOylation pathway but dependent on its D/E domain, also necessary for its protein-folding activity. SARS-CoV-2 infection triggers the re-localization of DAXX to cytoplasmic sites and promotes its degradation. Mechanistically, this process is mediated by the viral papain-like protease (PLpro) and the proteasome. Together, these results demonstrate that DAXX restricts SARS-CoV-2, which in turn has evolved a mechanism to counteract its action.

2.
Viruses ; 14(5):957, 2022.
Article in English | MDPI | ID: covidwho-1820419

ABSTRACT

We aimed to investigate the immunoglobulin G response and neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) among primary health care workers (PHCW) in France and assess the association between the neutralizing activity and several factors, including the coronavirus disease 2019 (COVID-19) vaccination scheme. A cross-sectional survey was conducted between 10 May 2021 and 31 August 2021. Participants underwent capillary blood sampling and completed a questionnaire. Sera were tested for the presence of antibodies against the nucleocapsid (N) protein and the S-1 portion of the spike (S) protein and neutralizing antibodies. In total, 1612 PHCW were included. The overall seroprevalences were: 23.6% (95% confidence interval (CI) 21.6–25.7%) for antibodies against the N protein, 94.7% (93.6–95.7%) for antibodies against the S protein, and 81.3% (79.4–83.2%) for neutralizing antibodies. Multivariate regression analyses showed that detection of neutralizing antibodies was significantly more likely in PHCW with previous SARS-CoV-2 infection than in those with no such history among the unvaccinated (odds ratio (OR) 16.57, 95% CI 5.96–59.36) and those vaccinated with one vaccine dose (OR 41.66, 95% CI 16.05–120.78). Among PHCW vaccinated with two vaccine doses, the detection of neutralizing antibodies was not significantly associated with previous SARS-CoV-2 infection (OR 1.31, 95% CI 0.86–2.07), but was more likely in those that received their second vaccine dose within the three months before study entry than in those vaccinated more than three months earlier (OR 5.28, 95% CI 3.51–8.23). This study highlights that previous SARS-CoV-2 infection and the time since vaccination should be considered when planning booster doses and the design of COVID-19 vaccine strategies.

3.
Euro Surveill ; 27(13)2022 Mar.
Article in English | MEDLINE | ID: covidwho-1775606

ABSTRACT

Since the first reports in summer 2020, SARS-CoV-2 reinfections have raised concerns about the immunogenicity of the virus, which will affect SARS-CoV-2 epidemiology and possibly the burden of COVID-19 on our societies in the future. This study provides data on the frequency and characteristics of possible reinfections, using the French national COVID-19 testing database. The Omicron variant had a large impact on the frequency of possible reinfections in France, which represented 3.8% of all confirmed COVID-19 cases since December 2021.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Testing , Humans , Reinfection
4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331294

ABSTRACT

Background: The protective immunity against Omicron following a BNT162b2 Pfizer booster dose among elderly is not well characterized. Methods: Thirty-eight residents from three nursing homes were recruited for the study. Antibodies targeting the Spike protein of SARS-CoV-2 were measured with the S-Flow assay. Neutralizing activities in sera were measured as effective dilution 50% (ED50) with the S-Fuse assay using authentic isolates of Delta and Omicron. Results: Among the 38 elderly included in the study, with median (inter-quartile range, IQR) age of 88 (81-92) years, 30 (78.9%) had been previously infected. The ED50 of neutralization were lower against Omicron than Delta, and higher among convalescent compared to naive residents. During an Omicron epidemic affecting two of the three nursing homes in December 2021-January 2022, 75% (6/8) of naive residents got infected, compared to 25% (6/24) of convalescents (P=0.03). Antibody levels to Spike and ED50 of neutralization against Omicron after the BNT162b2 booster dose were lower in those with breakthrough infection (n=12) compared to those without (n=20): median of 1256 vs 2523 BAU/mL (P=0.02) and median ED50 of 234 vs 1298 (P=0.0004), respectively. Conclusion: This study confirmed the importance of receiving at least three antigenic exposures to the SARS-CoV-2 Spike protein for achieving satisfactory neutralizing antibody levels. In this population, protection against Omicron infection was increased in individuals who had been previously infected in addition to the three vaccine doses. Thus, a fourth antigenic exposure may be useful in the elderly population to prevent infection with Omicron, a variant known for its high escape immunity properties.

5.
J Clin Virol Plus ; 1(4): 100041, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1734699

ABSTRACT

Background: The systemic antibody responses to SARS-CoV-2 in COVID-19 patients has been extensively studied. However, less is known about the mucosal responses in the upper airways, the site of initial SARS-CoV-2 replication. Methods: The IgG and IgA antibody responses were analysed in plasma and nasopharyngeal swabs from the first four confirmed COVID-19 patients in France. Two were pauci-symptomatic while two developed severe disease. We characterized their antibody profiles by using an in-house ELISA to detect antibodies directed against SARS-CoV-2 Nucleoprotein and Spike. Results: Anti-N IgG and IgA antibodies were detected in the NPS of severe patients only. The levels of antibodies in the plasma markedly differed amongst the patients. The most distinctive features are a strong anti-N IgG response in the severe patient who recovered, and a high anti-N IgA response specifically detected in the fatal case of COVID-19. Conclusions: Anti-N IgG and IgA antibodies are detected in NPS only for severe patients, with levels related to serological antibodies. The severe patients showed different antibody profiles in the plasma, notably regarding the IgA and IgG response to the N antigen, that may reflect different disease outcome. By contrast, pauci-symptomatic patients did not exhibit any mucosal antibodies in NSP, which is associated with a low or absent serological response against both N and S.

6.
Nature ; 604(7905): 330-336, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1692583

ABSTRACT

The animal reservoir of SARS-CoV-2 is unknown despite reports of SARS-CoV-2-related viruses in Asian Rhinolophus bats1-4, including the closest virus from R. affinis, RaTG13 (refs. 5,6), and pangolins7-9. SARS-CoV-2 has a mosaic genome, to which different progenitors contribute. The spike sequence determines the binding affinity and accessibility of its receptor-binding domain to the cellular angiotensin-converting enzyme 2 (ACE2) receptor and is responsible for host range10-12. SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 (hACE2) pathway have not yet been identified, although they would be key in understanding the origin of the epidemic. Here we show that such viruses circulate in cave bats living in the limestone karstic terrain in northern Laos, in the Indochinese peninsula. We found that the receptor-binding domains of these viruses differ from that of SARS-CoV-2 by only one or two residues at the interface with ACE2, bind more efficiently to the hACE2 protein than that of the SARS-CoV-2 strain isolated in Wuhan from early human cases, and mediate hACE2-dependent entry and replication in human cells, which is inhibited by antibodies that neutralize SARS-CoV-2. None of these bat viruses contains a furin cleavage site in the spike protein. Our findings therefore indicate that bat-borne SARS-CoV-2-like viruses that are potentially infectious for humans circulate in Rhinolophus spp. in the Indochinese peninsula.


Subject(s)
COVID-19 , Chiroptera , Angiotensin-Converting Enzyme 2 , Animals , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-314169

ABSTRACT

The world is facing a major health crisis, the global pandemic of COVID-19 caused by the SARS-CoV-2 coronavirus, for which no approved antiviral agents or vaccines are currently available. Here we describe a collection of codon-optimized coding sequences for SARS-CoV-2 cloned into Gateway-compatible entry vectors, which enable rapid transfer into a variety of expression and tagging vectors. The collection is freely available via Addgene. We hope that widespread availability of this SARS-CoV-2 resource will enable many subsequent molecular studies to better understand the viral life cycle and how to block it.

8.
Gastro Hep Adv ; 1(3): 393-402, 2022.
Article in English | MEDLINE | ID: covidwho-1670508

ABSTRACT

Background and Aims: Apolipoprotein A1 (A1) and haptoglobin (HP) serum levels are associated with the spread and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We have constructed and validated a multivariable risk calculator (A1HPV6) integrating A1, HP, alpha2-macroglobulin, and gamma glutamyl transferase to improve the performances of virological biomarkers. Methods: In a prospective observational study of hospitalized patients with nonsevere SARS-CoV-2 infection, A1HPV6 was constructed in 127 patients and validated in 116. The specificity was assessed in 7482 controls representing the general population. The primary diagnostic endpoint was the area under the receiver operating characteristic curve in patients with positive SARS-CoV-2 PCR. The primary prognostic endpoint was the age-and sex-adjusted risk of A1HPV6 to predict patients with WHO-stage > 4 (W > 4) severity. We assessed the kinetics of the A1HPV6 components in a nonhuman primate model (NHP), from baseline to 7 days (D7) after SARS-CoV-2 infection. Results: The area under the receiver operating characteristic curve for A1HPV6 was 0.99 (95% CI 0.97-0.99) in the validation subset, which was not significantly different from that in the construction subset, 0.99 (0.99-0.99; P = .80), like for sensitivity 92% (85-96) vs 94% (88-97; P = .29). A1HPV6 was associated with W > 4, with a significant odds ratio of 1.3 (1.1-1.5; 0.002). In NHP, A1 levels decreased (P < .01) at D2 and normalized at D4; HP levels increased at D2 and peaked at D4. In patients, A1 concentration was very low at D2 vs controls (P < .01) and increased at D14 (P < .01) but was still lower than controls; HP increased at D2 and remained elevated at D14. Conclusion: These results validate the diagnostic and prognostic performances of A1HPV6. Similar kinetics of apolipoprotein A1, HP, and alpha-2-macroglobulin were observed in the NHP model. ClinicalTrials.gov number, NCT01927133.

9.
Life (Basel) ; 12(2)2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1649724

ABSTRACT

During the COVID-19 pandemic, several generic variants emerged, including the Alpha variant, with increased transmissibility compared to historical strains. We aimed to compare the evolution of the viral load between patients infected with the Alpha variant and those infected with the historical SARS-CoV-2 strains, while taking into account the time interval between the onset of symptoms and samples. We used data collected from patients with an acute respiratory infection (mild to moderate symptoms) and seen in consultation in primary care, included in a prospective longitudinal study, COVID-A. Patients performed four salivary samples during the follow-up. All patients who had at least one of the saliva samples test positive for SARS-CoV-2 were included in the analysis. Overall, 118 patients were included: 89 infected by the historical strain and 29 infected by the Alpha variant. Even though we tended to observe a higher viral load in the Alpha variant group, we found no significant difference in the evolution of the viral load in saliva samples between patients infected with the Alpha variant of the SARS-CoV-2 and those infected by historical strains when controlling for the time interval between the onset of symptoms and sampling.

10.
Cell Rep Med ; 3(2): 100528, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1649494

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccines, Virus-Like Particle/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Liposomes , Macaca fascicularis , Male , Pandemics/prevention & control , Th1 Cells/immunology , Treatment Outcome , Vaccines, Virus-Like Particle/immunology , Vero Cells
11.
RNA ; 28(3): 277-289, 2022 03.
Article in English | MEDLINE | ID: covidwho-1592848

ABSTRACT

Coronavirus RNA-dependent RNA polymerases produce subgenomic RNAs (sgRNAs) that encode viral structural and accessory proteins. User-friendly bioinformatic tools to detect and quantify sgRNA production are urgently needed to study the growing number of next-generation sequencing (NGS) data of SARS-CoV-2. We introduced sgDI-tector to identify and quantify sgRNA in SARS-CoV-2 NGS data. sgDI-tector allowed detection of sgRNA without initial knowledge of the transcription-regulatory sequences. We produced NGS data and successfully detected the nested set of sgRNAs with the ranking M > ORF3a > N>ORF6 > ORF7a > ORF8 > S > E>ORF7b. We also compared the level of sgRNA production with other types of viral RNA products such as defective interfering viral genomes.


Subject(s)
Computational Biology/methods , Genome, Viral , RNA, Viral/genetics , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing , Open Reading Frames
12.
EMBO Rep ; 23(2): e54341, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1575628

ABSTRACT

SARS-CoV-2 infection results in impaired interferon response in patients with severe COVID-19. However, how SARS-CoV-2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS-CoV-2-infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus-derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3'UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 can potentially employ a virus-derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon-mediated immune response.


Subject(s)
COVID-19 , MicroRNAs , RNA, Viral/genetics , SARS-CoV-2/genetics , 3' Untranslated Regions , COVID-19/immunology , Humans , Immunity , MicroRNAs/genetics
14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293270

ABSTRACT

Coronavirus RNA-dependent RNA polymerases produce subgenomic RNAs (sgRNAs) that encode viral structural and accessory proteins. User-friendly bioinformatic tools to detect and quantify sgRNA production are urgently needed to study the growing number of next-generation sequencing (NGS) data of SARS-CoV-2. We introduced sgDI-tector to identify and quantify sgRNA in SARS-CoV-2 NGS data. sgDI-tector allowed detection of sgRNA without initial knowledge of the transcription-regulatory sequences. We produced NGS data and successfully detected the nested set of sgRNAs with the ranking M>ORF3a>N>ORF6>ORF7a>ORF8>S>E>ORF7b. We also compared the level of sgRNA production with other types of viral RNA products such as defective interfering viral genomes.

15.
Nat Commun ; 12(1): 6097, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475295

ABSTRACT

Effective treatments against Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Monoclonal antibodies have shown promising results in patients. Here, we evaluate the in vivo prophylactic and therapeutic effect of COVA1-18, a neutralizing antibody highly potent against the B.1.1.7 isolate. In both prophylactic and therapeutic settings, SARS-CoV-2 remains undetectable in the lungs of treated hACE2 mice. Therapeutic treatment also causes a reduction in viral loads in the lungs of Syrian hamsters. When administered at 10 mg kg-1 one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 shows very strong antiviral activity in the upper respiratory compartments. Using a mathematical model, we estimate that COVA1-18 reduces viral infectivity by more than 95% in these compartments, preventing lymphopenia and extensive lung lesions. Our findings demonstrate that COVA1-18 has a strong antiviral activity in three preclinical models and could be a valuable candidate for further clinical evaluation.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents/pharmacokinetics , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Lung/metabolism , Lung/virology , Macaca fascicularis , Male , Mesocricetus , Mice , Mice, Transgenic , SARS-CoV-2/isolation & purification , Tissue Distribution , Viral Load
16.
Clin Microbiol Infect ; 28(2): 298.e9-298.e15, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1458608

ABSTRACT

OBJECTIVES: In early January 2021 an outbreak of nosocomial cases of coronavirus disease 2019 (COVID-19) emerged in Western France; RT-PCR tests were repeatedly negative on nasopharyngeal samples but positive on lower respiratory tract samples. Whole-genome sequencing (WGS) revealed a new variant, currently defining a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.616. In March, the WHO classified this as a 'variant under investigation' (VUI). We analysed the characteristics and outcomes of COVID-19 cases related to this new variant. METHODS: Clinical, virological, and radiological data were retrospectively collected from medical charts in the two hospitals involved. We enrolled those inpatients with: (a) positive SARS-CoV-2 RT-PCR on a respiratory sample, (b) seroconversion with anti-SARS-CoV-2 IgG/IgM, or (c) suggestive symptoms and typical features of COVID-19 on a chest CT scan. Cases were categorized as B.1.616, a variant of concern (VOC), or unknown. RESULTS: From 1st January to 24th March 2021, 114 patients fulfilled the inclusion criteria: B.1.616 (n = 39), VOC (n = 32), and unknown (n = 43). B.1.616-related cases were older than VOC-related cases (81 years, interquartile range (IQR) 73-88 versus 73 years, IQR 67-82, p < 0.05) and their first RT-PCR tests were rarely positive (6/39, 15% versus 31/32, 97%, p < 0.05). The B.1.616 variant was independently associated with severe disease (multivariable Cox model HR 4.0, 95%CI 1.5-10.9) and increased lethality (28-day mortality 18/39 (46%) for B.1.616 versus 5/32 (16%) for VOC, p = 0.006). CONCLUSION: We report a nosocomial outbreak of COVID-19 cases related to a new variant, B.1.616, which is poorly detected by RT-PCR on nasopharyngeal samples and is associated with high lethality.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , France/epidemiology , Humans , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction
17.
Lancet Reg Health Eur ; 8: 100171, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1397543

ABSTRACT

BACKGROUND: We aimed to assess the effectiveness of two doses of mRNA COVID-19 vaccines against COVID-19 with the original virus and other lineages circulating in France. METHODS: In this nationwide case-control study, cases were SARS-CoV-2 infected adults with onset of symptoms between 14 February and 3 May 2021. Controls were non-infected adults from a national representative panel matched to cases by age, sex, region, population density and calendar week. Participants completed an online questionnaire on recent activity-related exposures and vaccination history. Information about the infecting virus was based on a screening RT-PCR for either B.1.1.7 or B.1.351/P.1 variants. FINDINGS: Included in our analysis were 7 288 adults infected with the original SARS-CoV-2 virus, 31 313 with the B.1.1.7 lineage, 2 550 with B.1.351/P1 lineages, and 3 644 controls. In multivariable analysis, the vaccine effectiveness (95% confidence interval) seven days after the second dose of mRNA vaccine was estimated at 88% (81-92), 86% (81-90) and 77% (63-86) against COVID-19 with the original virus, the B.1.1.7 lineage, and the B.1.351/P.1 lineages, respectively. Recent (2 to 6 months) history of virologically confirmed SARS-CoV-2 infection was found to be 83% (76-88), 88% (85-91) and 83% (71-90) protective against COVID-19 with the original virus, the B.1.1.7 lineage, and the B.1.351/P.1 lineages, respectively; and more distant (> 6 months) infections were 76% (54-87), 84% (75-90), and 74% (41-89) protective against COVID-19 with the original virus, the B.1.1.7 lineage, and the B.1.351/P.1 lineages, respectively. INTERPRETATION: In real-life settings, two doses of mRNA vaccines proved to be effective against COVID-19 with the original virus, B.1.1.7 lineage and B.1.351/P.1 lineages. FUNDING: Institut Pasteur, Research & Action Emerging Infectious Diseases (REACTing), Fondation de France (Alliance "Tous unis contre le virus").

19.
Cell Host Microbe ; 29(9): 1437-1453.e8, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1347535

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Dependovirus/genetics , Dependovirus/metabolism , Female , Humans , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology , Transgenes/genetics , Vaccination/methods , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL