Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Biophys Chem ; 288: 106854, 2022 09.
Article in English | MEDLINE | ID: covidwho-1906814

ABSTRACT

Molecular docking of 234 unique compounds identified in the softwood bark (W set) is presented with a focus on their inhibition potential to the main protease of the SARS-CoV-2 virus 3CLpro (6WQF). The docking results are compared with the docking results of 866 COVID19-related compounds (S set). Furthermore, machine learning (ML) prediction of docking scores of the W set is presented using the S set trained TensorFlow, XGBoost, and SchNetPack ML approaches. Docking scores are evaluated with the Autodock 4.2.6 software. Four compounds in the W set achieve a docking score below -13 kcal/mol, with (+)-lariciresinol 9'-p-coumarate (CID 11497085) achieving the best docking score (-15 kcal/mol) within the W and S sets. In addition, 50% of W set docking scores are found below -8 kcal/mol and 25% below -10 kcal/mol. Therefore, the compounds identified in the softwood bark, show potential for antiviral activity upon extraction or further derivatization. The W set molecular docking studies are validated by means of molecular dynamics (five best compounds). The solubility (Log S, ESOL) and druglikeness of the best docking compounds in S and W sets are compared to evaluate the pharmacological potential of compounds identified in softwood bark.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Machine Learning , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Plant Bark , Protease Inhibitors/pharmacology
2.
JOURNAL OF THE INDIAN CHEMICAL SOCIETY ; 99(6), 2022.
Article in English | Web of Science | ID: covidwho-1907308

ABSTRACT

In the present study, the main protease 3CL(pro) and non-structural protein (NSP-12 with co-factors 7 and 8) trimer complex are used to study the protein-drug interactions with the phytochemicals from Ocimum Sanctum, Tinospora Cordifolia, Glycyrrhiza Glabra, and Azadirachta Indica. Which can give insight to be used as potent antiviral drugs against SARS-CoV-2. Twenty phytochemicals, five from each plant species, known for their wide range of biological activities were chosen from the literature. The in-silico study was carried out using virtual screening tools and the top five, which showed the least binding energies, were selected. Molecular docking tools revealed that gedunin and epoxy azadiradione proved to be excellent inhibitors for 3CL(pro) and so did Tinosporide for nonstructural-protein complex. Further, the best-hit phytochemicals with respect to structure similarities with FDA drugs and investigatory drugs, were considered for comparative study. Molecular docking was done to check the drug-protein interactions and to check the inhibitory responses of these drugs against the viral protein. The analyses showed that the phytochemicals had similar responses on the protein complex but with exceptionally higher inhibitory responses hence which may be taken for further clinical study.

3.
Phytochemistry ; 201: 113284, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1886026

ABSTRACT

In this work, a bioassay-guided fractionation strategy was used to isolate 26 phenolic compounds from the ethyl acetate partition of an ethanol extract of the aerial parts of Glycyrrhiza uralensis Fisch. ex DC. Among them, 8 prenylated phenolic compounds (glycyuralins Q-X) were described for the first time. The two enantiomers of glycyuralin Q were purified and their absolute configurations were established by ECD spectral calculations. (1″R, 2″S)-glycyuralin Q and (1″S, 2″R)-glycyuralin Q showed significant inhibitory activities against SARS-CoV-2 virus proteases 3CLpro with IC50 values of 1.5 ± 1.0 and 4.0 ± 0.3 µM, and PLpro with IC50 values of 2.4 ± 0.2 and 1.9 ± 0.1 µM, respectively. Four compounds showed potent cytotoxic activities against A549, Huh-7, and HepG2 human cancer cells with IC50 values ranging from 0.5 to 2.5 µM.


Subject(s)
COVID-19 , Glycyrrhiza uralensis , Glycyrrhiza , Humans , Phenols/pharmacology , Plant Components, Aerial , SARS-CoV-2
4.
Comput Biol Med ; 146: 105668, 2022 07.
Article in English | MEDLINE | ID: covidwho-1867012

ABSTRACT

Benzalacetophenones, precursors of flavonoids are aromatic ketones and enones and possess the immunostimulant as well as antiviral activities. Thus, benzalacetophenones were screened against the COVID-19 that could be lethal in patients with compromised immunity. We considered ChEBI recorded benzalacetophenone derivative(s) and evaluated their activity against 3C-like protease (3CLpro), papain-like protease (PLpro), and spike protein of SARS-Cov-2 to elucidate their possible role as antiviral agents. The probable targets for each compound were retrieved from DIGEP-Pred at 0.5 pharmacological activity and all the modulated proteins were enriched to identify the probably regulated pathways, biological processes, cellular components, and molecular functions. In addition, molecular docking was performed using AutoDock 4 and the best-identified hits were subjected to all-atom molecular dynamics simulation and binding energy calculations using molecular mechanics Poisson-Boltzmann surface area (MMPBSA). The compound 4-hydroxycordoin showed the highest druglikeness score and regulated nine proteins of which five were down-regulated and four were upregulated. Similarly, enrichment analysis identified the modulation of multiple pathways concerned with the immune system as well as pathways related to infectious and non-infectious diseases. Likewise, 3'-(3-methyl-2-butenyl)-4'-O-ß-d-glucopyranosyl-4,2'-dihydroxychalcone with 3CLpro, 4-hydroxycordoin with PLpro and mallotophilippen D with spike protein receptor-binding domain showed highest binding affinity, revealed stable interactions during the simulation, and scored binding free energy of -26.09 kcal/mol, -16.28 kcal/mol, and -39.2 kcal/mol, respectively. Predicted anti-SARS-CoV-2 activities of the benzalacetophenones reflected the requirement of wet lab studies to develop novel antiviral candidates.


Subject(s)
COVID-19 , Chalcone , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Eur J Med Chem ; 228: 114030, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1768048

ABSTRACT

The epidemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread worldwide and efficacious therapeutics are urgently needed. 3-Chymotrypsin-like cysteine protease (3CLpro) is an indispensable protein in viral replication and represents an attractive drug target for fighting COVID-19. Herein, we report the discovery of 9,10-dihydrophenanthrene derivatives as non-peptidomimetic and non-covalent inhibitors of the SARS-CoV-2 3CLpro. The structure-activity relationships of 9,10-dihydrophenanthrenes as SARS-CoV-2 3CLpro inhibitors have carefully been investigated and discussed in this study. Among all tested 9,10-dihydrophenanthrene derivatives, C1 and C2 display the most potent SARS-CoV-2 3CLpro inhibition activity, with IC50 values of 1.55 ± 0.21 µM and 1.81 ± 0.17 µM, respectively. Further enzyme kinetics assays show that these two compounds dose-dependently inhibit SARS-CoV-2 3CLprovia a mixed-inhibition manner. Molecular docking simulations reveal the binding modes of C1 in the dimer interface and substrate-binding pocket of the target. In addition, C1 shows outstanding metabolic stability in the gastrointestinal tract, human plasma, and human liver microsome, suggesting that this agent has the potential to be developed as an orally administrated SARS-CoV-2 3CLpro inhibitor.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery/methods , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Gastrointestinal Tract/metabolism , Humans , Kinetics , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors
6.
J Biol Chem ; 298(4): 101739, 2022 04.
Article in English | MEDLINE | ID: covidwho-1693313

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a global threat to human health has highlighted the need for the development of novel therapies targeting current and emerging coronaviruses with pandemic potential. The coronavirus main protease (Mpro, also called 3CLpro) is a validated drug target against coronaviruses and has been heavily studied since the emergence of SARS-CoV-2 in late 2019. Here, we report the biophysical and enzymatic characterization of native Mpro, then characterize the steady-state kinetics of several commonly used FRET substrates, fluorogenic substrates, and six of the 11 reported SARS-CoV-2 polyprotein cleavage sequences. We then assessed the suitability of these substrates for high-throughput screening. Guided by our assessment of these substrates, we developed an improved 5-carboxyfluorescein-based FRET substrate, which is better suited for high-throughput screening and is less susceptible to interference and false positives than existing substrates. This study provides a useful framework for the design of coronavirus Mpro enzyme assays to facilitate the discovery and development of therapies targeting Mpro.


Subject(s)
Coronavirus 3C Proteases , Enzyme Assays , Fluoresceins , SARS-CoV-2 , Antiviral Agents/chemistry , COVID-19/drug therapy , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Enzyme Assays/methods , Fluoresceins/chemistry , Fluoresceins/metabolism , High-Throughput Screening Assays , Humans , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/genetics
7.
Eur J Med Chem ; 228: 114030, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1654355

ABSTRACT

The epidemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread worldwide and efficacious therapeutics are urgently needed. 3-Chymotrypsin-like cysteine protease (3CLpro) is an indispensable protein in viral replication and represents an attractive drug target for fighting COVID-19. Herein, we report the discovery of 9,10-dihydrophenanthrene derivatives as non-peptidomimetic and non-covalent inhibitors of the SARS-CoV-2 3CLpro. The structure-activity relationships of 9,10-dihydrophenanthrenes as SARS-CoV-2 3CLpro inhibitors have carefully been investigated and discussed in this study. Among all tested 9,10-dihydrophenanthrene derivatives, C1 and C2 display the most potent SARS-CoV-2 3CLpro inhibition activity, with IC50 values of 1.55 ± 0.21 µM and 1.81 ± 0.17 µM, respectively. Further enzyme kinetics assays show that these two compounds dose-dependently inhibit SARS-CoV-2 3CLprovia a mixed-inhibition manner. Molecular docking simulations reveal the binding modes of C1 in the dimer interface and substrate-binding pocket of the target. In addition, C1 shows outstanding metabolic stability in the gastrointestinal tract, human plasma, and human liver microsome, suggesting that this agent has the potential to be developed as an orally administrated SARS-CoV-2 3CLpro inhibitor.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery/methods , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Gastrointestinal Tract/metabolism , Humans , Kinetics , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors
8.
Food Chem ; 373(Pt B): 131594, 2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1603682

ABSTRACT

The abundance of polyphenols in edible plants makes them an important component of human nutrition. Considering the ongoing COVID-19 pandemic, a number of studies have investigated polyphenols as bioactive constituents. We applied in-silico molecular docking as well as molecular dynamics supported by in-vitro assays to determine the inhibitory potential of various plant polyphenols against an important SARS-CoV-2 therapeutic target, the protease 3CLpro. Of the polyphenols in initial in-vitro screening, quercetin, ellagic acid, curcumin, epigallocatechin gallate and resveratrol showed IC50 values of 11.8 µM to 23.4 µM. In-silico molecular dynamics simulations indicated stable interactions with the 3CLpro active site over 100 ns production runs. Moreover, surface plasmon resonance spectroscopy was used to measure the binding of polyphenols to 3CLpro in real time. Therefore, we provide evidence for inhibition of SARS-CoV-2 3CLpro by natural plant polyphenols, and suggest further research into the development of these novel 3CLpro inhibitors or biochemical probes.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Polyphenols , SARS-CoV-2/drug effects , Molecular Docking Simulation , Peptide Hydrolases , Polyphenols/pharmacology
9.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: covidwho-1580698

ABSTRACT

In this review, we collected 1765 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M-pro inhibitors from the bibliography and other sources, such as the COVID Moonshot project and the ChEMBL database. This set of inhibitors includes only those compounds whose inhibitory capacity, mainly expressed as the half-maximal inhibitory concentration (IC50) value, against M-pro from SARS-CoV-2 has been determined. Several covalent warheads are used to treat covalent and non-covalent inhibitors separately. Chemical space, the variation of the IC50 inhibitory activity when measured by different methods or laboratories, and the influence of 1,4-dithiothreitol (DTT) are discussed. When available, we have collected the values of inhibition of viral replication measured with a cellular antiviral assay and expressed as half maximal effective concentration (EC50) values, and their possible relationship to inhibitory potency against M-pro is analyzed. Finally, the most potent covalent and non-covalent inhibitors that simultaneously inhibit the SARS-CoV-2 M-pro and the virus replication in vitro are discussed.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/chemistry , Databases, Pharmaceutical , Enzyme Assays/methods , Inhibitory Concentration 50 , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Virus Replication/drug effects
10.
Bioscience Research ; 18(3):2406-2415, 2021.
Article in English | Web of Science | ID: covidwho-1558039

ABSTRACT

Coronavirus disease-19 (Covid-19) has been pandemic since 2019 and the world is still trying to cope with it. Even though there is a new hope with the invention of the vaccine, the virus has rapid mutation rate. Therefore alternative solutions are necessary and one of them is using the herbs with their active compounds. Syzygium cumini (L.) Skeels. is a species of Myrtaceae containing various phytochemical compounds with medicinal activity, such as anti-oxidants, anti-inflammatory, anti-cancer, anti-tumour, anti-diabetes and anti-microbial. Previous studies showed that several compound contained in S. cumini had the potential of having anti-coronavirus activities. This study aimed to determine the phytochemical compounds of S. cumini and to screen their potential as an anti-coronavirus. The method used in this research were literature study and molecular docking. The results showed that S. cumini contained the active compounds of anti-coronavirus, namely betulinic acid, kaempferol, malvidin, myricetin and quercetin. Those compounds are contained in the bark of S. cumini.

11.
J Mol Graph Model ; 110: 108042, 2022 01.
Article in English | MEDLINE | ID: covidwho-1517349

ABSTRACT

We have studied the non-covalent interaction between PF-07321332 and SARS-CoV-2 main protease at the atomic level using a computational approach based on extensive molecular dynamics simulations with explicit solvent. PF-07321332, whose chemical structure has been recently disclosed, is a promising oral antiviral clinical candidate with well-established anti-SARS-CoV-2 activity in vitro. The drug, currently in phase III clinical trials in combination with ritonavir, relies on the electrophilic attack of a nitrile warhead to the catalytic cysteine of the protease. Nonbonded interaction between the inhibitor and the residues of the binding pocket, as well as with water molecules on the protein surface, have been characterized using two different force fields and the two possible protonation states of the main protease catalytic dyad HIS41-CYS145. When the catalytic dyad is in the neutral state, the non-covalent binding is likely to be stronger. Molecular dynamics simulations seems to lend support for an inhibitory mechanism in two steps: a first non-covalent addition with the dyad in neutral form and then the formation of the thiolate-imidazolium ion pair and the ligand relocation for finalising the electrophilic attack.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/therapeutic use , Coronavirus 3C Proteases , Humans , Lactams , Leucine , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles , Proline , Protease Inhibitors
12.
Int J Biol Macromol ; 187: 976-987, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1474606

ABSTRACT

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Subject(s)
3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Ampelopsis/chemistry , Antiviral Agents/pharmacology , Flavonoids/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Binding Sites/drug effects , Cysteine/metabolism , Flavonoids/chemistry , Flavonols/chemistry , Flavonols/pharmacology , Mass Spectrometry , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding/drug effects , Protein Conformation/drug effects , SARS-CoV-2/drug effects
13.
Cell Rep ; 37(4): 109892, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1458753

ABSTRACT

The main viral protease (3CLpro) is indispensable for SARS-CoV-2 replication. We delineate the human protein substrate landscape of 3CLpro by TAILS substrate-targeted N-terminomics. We identify more than 100 substrates in human lung and kidney cells supported by analyses of SARS-CoV-2-infected cells. Enzyme kinetics and molecular docking simulations of 3CLpro engaging substrates reveal how noncanonical cleavage sites, which diverge from SARS-CoV, guide substrate specificity. Cleaving the interactors of essential effector proteins, effectively stranding them from their binding partners, amplifies the consequences of proteolysis. We show that 3CLpro targets the Hippo pathway, including inactivation of MAP4K5, and key effectors of transcription, mRNA processing, and translation. We demonstrate that Spike glycoprotein directly binds galectin-8, with galectin-8 cleavage disengaging CALCOCO2/NDP52 to decouple antiviral-autophagy. Indeed, in post-mortem COVID-19 lung samples, NDP52 rarely colocalizes with galectin-8, unlike in healthy lungs. The 3CLpro substrate degradome establishes a foundational substrate atlas to accelerate exploration of SARS-CoV-2 pathology and drug design.


Subject(s)
COVID-19 , Coronavirus 3C Proteases/metabolism , SARS-CoV-2/metabolism , Humans , Substrate Specificity
14.
Pharmacol Res ; 158: 104939, 2020 08.
Article in English | MEDLINE | ID: covidwho-1318941

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) has been declared as a global pandemic, but specific medicines and vaccines are still being developed. In China, interventional therapies with traditional Chinese medicine for COVID-19 have achieved significant clinical efficacies, but the underlying pharmacological mechanisms are still unclear. This article reviewed the etiology of COVID-19 and clinical efficacy. Both network pharmacological study and literature search were used to demonstrate the possible action mechanisms of Chinese medicines in treating COVID-19. We found that Chinese medicines played the role of antivirus, anti-inflammation and immunoregulation, and target organs protection in the management of COVID-19 by multiple components acting on multiple targets at multiple pathways. AEC2 and 3CL protein could be the direct targets for inhibiting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Quercetin, kaempferol, luteolin, isorhamnetin, baicalein, naringenin, and wogonin could be the main active ingredients of Chinese medicines for the management of COVID-19 by targeting on AEC2 and 3CL protein and inhibiting inflammatory mediators, regulating immunity, and eliminating free radicals through COX-2, CASP3, IL-6, MAPK1, MAPK14, MAPK8, and REAL in the signaling pathways of IL-17, arachidonic acid, HIF-1, NF-κB, Ras, and TNF. This study may provide meaningful and useful information on further research to investigate the action mechanisms of Chinese medicines against SARS-CoV-2 and also provide a basis for sharing the "China scheme" for COVID-19 treatment.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Phytotherapy , Pneumonia, Viral/drug therapy , COVID-19 , Humans , Models, Biological , Pandemics , SARS-CoV-2
15.
Int J Biol Macromol ; 183: 182-192, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1305238

ABSTRACT

After the emergence of the pandemic, repurposed drugs have been considered as a quicker way of finding potential antiviral agents. SARS-CoV-2 3CLpro is essential for processing the viral polyproteins into mature non-structural proteins, making it an attractive target for developing antiviral agents. Here we show that Vitamin K3 screened from the FDA-Approved Drug Library containing an array of 1,018 compounds has potent inhibitory activity against SARS-CoV-2 3CLpro with the IC50 value of 4.78 ± 1.03 µM, rather than Vitamin K1, K2 and K4. Next, the time-dependent inhibitory experiment was carried out to confirm that Vitamin K3 could form the covalent bond with SARS-CoV-2 3CLpro. Then we analyzed the structure-activity relationship of Vitamin K3 analogues and identified 5,8-dihydroxy-1,4-naphthoquinone with 9.8 times higher inhibitory activity than Vitamin K3. Further mass spectrometric analysis and molecular docking study verified the covalent binding between Vitamin K3 or 5,8-dihydroxy-1,4-naphthoquinone and SARS-CoV-2 3CLpro. Thus, our findings provide valuable information for further optimization and design of novel inhibitors based on Vitamin K3 and its analogues, which may have the potential to fight against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Vitamin K 3 , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/therapeutic use , Humans , Vitamin K 3/analogs & derivatives , Vitamin K 3/chemistry
16.
Comb Chem High Throughput Screen ; 24(8): 1271-1280, 2021.
Article in English | MEDLINE | ID: covidwho-1302072

ABSTRACT

BACKGROUND: Novel coronavirus is a type of enveloped viruses with a single-stranded RNA enclosing helical nucleocapsid. The envelope consists of spikes on the surface which are made up of proteins through which virus enters into human cells. Until now, there is no specific drug or vaccine available to treat COVID-19 infection. In this scenario, reposting of drug or active molecules may provide rapid solution to fight against this deadly disease. OBJECTIVE: We selected 30 phytoconstituents from the different plants which are reported for antiviral activities against coronavirus (CoVs) and performed in silico screening to find out phytoconstituents which have potency to inhibit specific target of the novel coronavirus. METHODS: We performed molecular docking studies on three different proteins of novel coronavirus, namely COVID-19 main protease (3CL pro), papain-like protease (PL pro) and spike protein (S) attached to ACE2 binding domain. The screening of the phytoconstituents on the basis of binding affinity compared to standard drugs. The validations of screened compounds were done using ADMET and bioactivity prediction. RESULTS: We screened five compounds biscoclaurine, norreticuline, amentoflavone, licoricidin and myricetin, using in silico approach. All compounds were found safe in In silico toxicity studies. Bioactivity prediction reveals that these compounds may act through protease or enzyme inhibition. Results of compound biscoclaurine norreticuline were more interesting as this biscoclaurine had higher binding affinity for the target 3CLpro and PLpro targets and norreticuline had a higher binding affinity for the target PLpro and Spike protein. CONCLUSION: Our study concludes that these compounds could be further explored rapidly as it may have potential to fight against COVID-19.


Subject(s)
Biological Products , COVID-19 , Antiviral Agents/pharmacology , Biological Products/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2
17.
Eur J Pharmacol ; 901: 174082, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1252814

ABSTRACT

The pandemic, COVID-19, has spread worldwide and affected millions of people. There is an urgent need, therefore, to find a proper treatment for the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent. This paper focuses on identifying inhibitors that target SARS-CoV-2 proteases, PLPRO and 3CLPRO, which control the duplication and manages the life cycle of SARS-CoV-2. We have carried out detailed in silico Virtual high-throughput screening using Food and Drug Administration (FDA) approved drugs from the Zinc database, COVID-19 clinical trial compounds from Pubchem database, Natural compounds from Natural Product Activity and Species Source (NPASS) database and Maybridge database against PLPRO and 3CLPRO proteases. After thoroughly analyzing the screening results, we found five compounds, Bemcentinib, Pacritinib, Ergotamine, MFCD00832476, and MFCD02180753 inhibit PLPRO and six compounds, Bemcentinib, Clofazimine, Abivertinib, Dasabuvir, MFCD00832476, Leuconicine F inhibit the 3CLPRO. These compounds are stable within the protease proteins' active sites at 20ns MD simulation. The stability is revealed by hydrogen bond formations, hydrophobic interactions, and salt bridge interactions. Our study results also reveal that the selected five compounds against PLPRO and the six compounds against 3CLPRO bind to their active sites with good binding free energy. These compounds that inhibit the activity of PLPRO and 3CLPRO may, therefore, be used for treating COVID-19 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , High-Throughput Screening Assays/methods , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Catalytic Domain/drug effects , Databases, Factual , Drug Repositioning , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Salts/chemistry , Viral Nonstructural Proteins
18.
Pharmacol Ther ; 225: 107843, 2021 09.
Article in English | MEDLINE | ID: covidwho-1211101

ABSTRACT

COVID-19 has remained an uncontained, worldwide pandemic. While battling for the disease in China, six Traditional Chinese Medicine (TCM) recipes have been shown to be remarkably effective for treating patients with COVID-19. The present review discusses principles of TCM in curing infectious disease, and clinical evidence and mechanisms of the 6 most effective TCM recipes used in treating COVID-19 in 92% of all of the confirmed cases in China. Applications of TCM and specific recipes in the treatment of other viral infections, such as those caused by SARS-CoV, MERS-CoV, hepatitis B virus, hepatitis C virus, influenza A virus (including H1N1 and H7N9), influenza B, dengue virus as well as Ebola virus, are also discussed. Among the 6 TCM recipes, Jinhua Qinggan (JHQG) granules and Lianhua Qingwen (LHQW) capsules are recommended during medical observation; Lung Cleansing and Detoxifying Decoction (LCDD) is recommended for the treatment of both severe and non-severe patients; Xuanfeibaidu (XFBD) granules are recommended for treating moderate cases; while Huashibaidu (HSBD) and Xuebijing (XBJ) have been used in managing severe cases effectively. The common components and the active ingredients of the six TCM recipes have been summarized to reveal most promising drug candidates. The potential molecular mechanisms of the active ingredients in the six TCM recipes that target ACE2, 3CLpro and IL-6, revealed by molecular biological studies and/or network pharmacology prediction/molecular docking analysis/visualization analysis, are fully discussed. Therefore, further investigation of these TCM recipes may be of high translational value in enabling novel targeted therapies for COVID-19, potentially via purification and characterization of the active ingredients in the effective TCM recipes.


Subject(s)
COVID-19/drug therapy , Medicine, Chinese Traditional/methods , Humans , Medicine, Chinese Traditional/adverse effects , SARS-CoV-2 , Virus Diseases/drug therapy
19.
Int J Biol Macromol ; 183: 182-192, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1203068

ABSTRACT

After the emergence of the pandemic, repurposed drugs have been considered as a quicker way of finding potential antiviral agents. SARS-CoV-2 3CLpro is essential for processing the viral polyproteins into mature non-structural proteins, making it an attractive target for developing antiviral agents. Here we show that Vitamin K3 screened from the FDA-Approved Drug Library containing an array of 1,018 compounds has potent inhibitory activity against SARS-CoV-2 3CLpro with the IC50 value of 4.78 ± 1.03 µM, rather than Vitamin K1, K2 and K4. Next, the time-dependent inhibitory experiment was carried out to confirm that Vitamin K3 could form the covalent bond with SARS-CoV-2 3CLpro. Then we analyzed the structure-activity relationship of Vitamin K3 analogues and identified 5,8-dihydroxy-1,4-naphthoquinone with 9.8 times higher inhibitory activity than Vitamin K3. Further mass spectrometric analysis and molecular docking study verified the covalent binding between Vitamin K3 or 5,8-dihydroxy-1,4-naphthoquinone and SARS-CoV-2 3CLpro. Thus, our findings provide valuable information for further optimization and design of novel inhibitors based on Vitamin K3 and its analogues, which may have the potential to fight against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Vitamin K 3 , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/therapeutic use , Humans , Vitamin K 3/analogs & derivatives , Vitamin K 3/chemistry
20.
Fitoterapia ; 152: 104909, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1203052

ABSTRACT

3-Chymotrypsin-like protease (3CLpro) is a virally encoded main proteinase that is pivotal for the viral replication across a broad spectrum of coronaviruses. This study aims to discover the naturally occurring SARS-CoV-2 3CLpro inhibitors from herbal constituents, as well as to investigate the inhibitory mechanism of the newly identified efficacious SARS-CoV-2 3CLpro inhibitors. Following screening of the inhibitory potentials of eighty herbal products against SARS-CoV-2 3CLpro, Ginkgo biloba leaves extract (GBLE) was found with the most potent SARS-CoV-2 3CLpro inhibition activity (IC50 = 6.68 µg/mL). Inhibition assays demonstrated that the ginkgolic acids (GAs) and the bioflavones isolated from GBLE displayed relatively strong SARS-CoV-2 3CLpro inhibition activities (IC50 < 10 µM). Among all tested constituents, GA C15:0, GA C17:1 and sciadopitysin displayed potent 3CLpro inhibition activities, with IC50 values of less than 2 µM. Further inhibition kinetic studies and docking simulations clearly demonstrated that two GAs and sciadopitysin strongly inhibit SARS-CoV-2 3CLprovia a reversible and mixed inhibition manner. Collectively, this study found that both GBLE and the major constituents in this herbal product exhibit strong SARS-CoV-2 3CLpro inhibition activities, which offer several promising leading compounds for developing novel anti-COVID-19 medications via targeting on 3CLpro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 , Coronavirus Protease Inhibitors/pharmacology , Ginkgo biloba/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/therapeutic use , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , COVID-19/drug therapy , Coronavirus Protease Inhibitors/therapeutic use , Flavones/pharmacology , Flavones/therapeutic use , Humans , Molecular Structure , Phytotherapy , Plant Extracts/therapeutic use , Plant Leaves/chemistry , SARS-CoV-2/enzymology , Salicylates/pharmacology , Salicylates/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL