Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Zycie Weterynaryjne ; 95(9):554-559, 2020.
Article in Polish | CAB Abstracts | ID: covidwho-2011448

ABSTRACT

Throughout the course of civilization, epidemics and pandemics have ravaged humanity, destroyed animal breeding and horticulture, and has also changed the course of history. It has been estimated that Justinian plague has affected half of the population of Europe and killed in three pandemics 50 million people, the avian-borne flu (Spanish flu), resulted in 50 million deaths worldwide in the years 1918-1919, and recently the COVID-19 is officially a pandemic, after barreling through 114 countries in just three months. In the past, rinderpest has hit Europe with three long panzootics, African swine fever (ASF), is still a threat to both the swine production industry and the health of wild boar populations. Several molecular changes occur in the pathogen that may trigger an epidemic or even pandemic. These include increase of virulence, introduction into a novel host, and changes in host susceptibility to the pathogen. Once the infectious disease threat reaches an epidemic or pandemic level, the goal of the response is to mitigate its impact and reduce its incidence, morbidity and mortality as well as disruptions to economic, political, and social systems. An epidemic curve shows progression of illnesses in an outbreak over time and the SIR, SI, SIRD and SEIR represent the simplest compartmental models that enable simplify the mathematical modelling of epidemics. This article throws a light on changing ideas in epidemiology of infectious diseases.

2.
Frontiers in Veterinary Science ; 9:10, 2022.
Article in English | Web of Science | ID: covidwho-1979080

ABSTRACT

African swine fever virus (ASFV) is a leading cause of worldwide agricultural loss. ASFV is a highly contagious and lethal disease for both domestic and wild pigs, which has brought enormous economic losses to a number of countries. Conventional methods, such as general polymerase chain reaction and isothermal amplification, are time-consuming, instrument-dependent, and unsatisfactorily accurate. Therefore, rapid, sensitive, and field-deployable detection of ASFV is important for disease surveillance and control. Herein, we created a one-pot visual detection system for ASFV with CRISPR/Cas12a technology combined with LAMP or RPA. A mineral oil sealing strategy was adopted to mitigate sample cross-contamination between parallel vials during high-throughput testing. Furthermore, the blue fluorescence signal produced by ssDNA reporter could be observed by the naked eye without any dedicated instrument. For CRISPR-RPA system, detection could be completed within 40 min with advantageous sensitivity. While CRISPR-LAMP system could complete it within 60 min with a high sensitivity of 5.8 x 10(2) copies/mu l. Furthermore, we verified such detection platforms display no cross-reactivity with other porcine DNA or RNA viruses. Both CRISPR-RPA and CRISPR-LAMP systems permit highly rapid, sensitive, specific, and low-cost Cas12a-mediated visual diagnostic of ASFV for point-of-care testing (POCT) applications.

3.
Bulletin des GTV ; 104:85-92, 2021.
Article in French | CAB Abstracts | ID: covidwho-1957885

ABSTRACT

Coronaviruses have a high evolutionary capacity which has led to their very large genetic diversity. Their prevalence in nature is very high and they can infect a wide spectrum of hosts including mammals (including humans) and birds. To date, six porcine coronaviruses have been identified. Two of which were responsible for severe epizootics in pigs with a major impact in the global swine industry in the 60's to 80's for porcine transmissible gastroenteritis virus and since the 2010's in China and 2014 in North America for porcine epidemic diarrhoea virus. The latter has also become the third most important pathogen for pigs in China after the African swine fever virus and the porcine reproductive and respiratory syndrome virus. This review summarizes the latest developments in scientific knowledge of these porcine coronaviruses.

4.
FAPRI-MU Report - Food and Agricultural Policy Research Institute, College of Agriculture, Food and Natural Resources, University of Missouri|2021. (08-21):unpaginated. ; 2021.
Article in English | CAB Abstracts | ID: covidwho-1837130

ABSTRACT

In 2021 the markets for the commodities in this update have continued to be disrupted by COVID-19. All levels of the markets in many countries have been impacted from the supply of inputs, to processing capability and logistics. African Swine Fever (ASF), particularly in China, has disrupted meat markets. Volatility in these markets in the near term is to be expected and it is important to note that the path these markets take will be more volatile than what is projected here. Furthermore, the numbers presented in this report should not be interpreted as forecasts but as projections. They are estimates of the average values that would prevail under normal weather, current policy and macroeconomic parameters assumed herein. This update was prepared the weeks of August 23 and August 30, 2021 using data available at that time. Current policies are assumed to remain in place. The update uses data for international dairy and livestock from USDA's Production, Supply and Distribution database, with updates from the latest USDA's GAIN reports and other sources. Biofuels data comes primarily from F.O. Licht supplemented by GAIN reports and some country sources. The macroeconomy is assumed to evolve as forecast by IHS Markit in July 2021. Additionally no further assumptions have been made with regards to any other markets impacts associated with COVID-19.

5.
Traditional Medicine Research ; 7(3), 2022.
Article in English | EMBASE | ID: covidwho-1822800
6.
Science ; 373(6558):977.19-979, 2021.
Article in English | EMBASE | ID: covidwho-1769813
7.
Science ; 373(6558):977.13-979, 2021.
Article in English | EMBASE | ID: covidwho-1769812
8.
Science ; 373(6558):977.7-978, 2021.
Article in English | EMBASE | ID: covidwho-1769810
9.
Science ; 373(6558):977.6-978, 2021.
Article in English | EMBASE | ID: covidwho-1769809
10.
Science ; 373(6558):977.4-978, 2021.
Article in English | EMBASE | ID: covidwho-1769808
11.
Transbound Emerg Dis ; 69(4): e505-e516, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1434843

ABSTRACT

African swine fever (ASF) is a contagious disease with high mortality in domestic and feral swine populations. Although it is not a zoonosis, its spread may have severe socio-economic and public health consequences. The activities of veterinary services are essential for controlling ASF outbreaks within a country, but also for diminishing its threat of spread to neighbouring countries, and for recognizing its entry into countries that are currently free. ASF requires quick responses and permanent monitoring to identify outbreaks and prevent spread, and both aspects can be heavily undercut during the COVID-19 pandemic. This paper analyses changing patterns of the main drivers and pathways for the potential introduction of ASFV into the United States during the COVID-19 pandemic, including international movements of people, swine products and by-products. Data on commercial flights and merchant ships was used as a proxy to indirectly assess the flow of illegal products coming from ASF affected countries. Results from this study highlight a decreasing trend in the legal imports of swine products and by-products from ASF affected countries (Sen's slope = -99, 95% CI: -215.34 to -21.26, p-value < 0.05), while no trend was detected for confiscations of illegal products at ports of entry. Additionally, increasing trends were detected for the monthly number of merchant ships coming from ASF affected countries (Sen's slope = 0.46, 95%CI 0.25-0.59), the monthly value of imported goods ($) through merchant ships (Sen's slope = 1513196160, 95%CI 1072731702-1908231855), and the monthly percentage of commercial flights (Sen's slope = 0.005, 95%CI 0.003-0.007), with the majority of them originating from China. Overall, the findings show an increased connection of the United States with ASF affected countries, highlighting the risk posed by ASF during a global public health crisis.


Subject(s)
African Swine Fever Virus , African Swine Fever , COVID-19 , Swine Diseases , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Animals , COVID-19/epidemiology , COVID-19/veterinary , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Humans , Pandemics , Risk Factors , Sus scrofa , Swine , Swine Diseases/epidemiology , United States/epidemiology
12.
Transbound Emerg Dis ; 68(5): 2722-2732, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1411004

ABSTRACT

African Swine Fever Virus (ASFV) is a highly contagious pathogen that causes disease in pigs, commonly characterized by acute haemorrhagic fever. Prior to August 2018, African Swine Fever (ASF) had not been reported in Asia, but has since spread throughout China, Mongolia, Korea, Vietnam, Laos, Cambodia, Myanmar, the Philippines, Hong Kong, Indonesia, Timor-Leste and Papua New Guinea. Using data collated from reports of confirmed cases, we applied spatio-temporal analysis to describe ASFV spread throughout Asia during its early phase-from 1 August 2018 (reported start date) to 31 December 2019-to provide an overview and comparative analysis. Analysis revealed a propagating epidemic of ASFV throughout Asia, with peaks corresponding to increased reports from China, Vietnam and Laos. Two clusters of reported outbreaks were found. During the epidemic, ASFV primarily spread from the North-East to the South-East: A larger, secondary cluster in the North-East represented earlier reports, while the smaller, primary cluster in the South-East was characterized by later reports. Significant differences in country-specific epidemics, morbidity, mortality and unit types were discovered. The initial number of outbreaks and enterprise size are likely predictors of the speed of spread and the effectiveness of ASFV stamping out procedures. Biosecurity methods, wild boar populations and the transportation of pigs and movement of infected fomites are discussed as likely risk factors for facilitating ASFV spread across Asia.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/epidemiology , Animals , Disease Outbreaks/veterinary , Hong Kong , Sus scrofa , Swine , Swine Diseases/epidemiology
13.
Transbound Emerg Dis ; 68(5): 2787-2794, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1411002

ABSTRACT

African swine fever (ASF) is a severe haemorrhagic disease of domestic and wild pigs caused by the African swine fever virus (ASFV). In recent years, ASF has steadily spread towards new geographical areas, reaching Europe and Asia. On January 15th, 2019, Mongolia reported its first ASF outbreak to the World Organization for Animal Health (OIE), becoming, after China, the second country in the region affected by the disease. Following an event of unusual mortality in domestic pigs in Bulgan Province, a field team visited four farms and a meat market in the region to conduct an outbreak investigation and collect samples for laboratory analysis. Different organs were examined for ASF associated lesions, and total nucleic acid was extracted for real-time PCR, virus isolation and molecular characterization. The real-time PCR results confirmed ASFV DNA in 10 out of 10 samples and ASFV was isolated. Phylogenetic analysis established that ASFVs from Mongolia belong to genotype II and serogroup 8. The viruses were identical to each other, and to domestic pig isolates identified in China and Russia, based on the comparison of five genomic targets. Our results suggest a cross-border spread of ASFV, without indicating the source of infection.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/epidemiology , African Swine Fever Virus/genetics , Animals , Genotype , Mongolia , Phylogeny , Sus scrofa , Swine
14.
ACS Sens ; 6(5): 1963-1970, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1223060

ABSTRACT

Quantitative polymerase chain reaction (qPCR) is widely applied in foodborne pathogen detection and diagnosis. According to the cycles of threshold (Ct) values of qPCR testing, samples are judged as positive or negative. However, samples with Ct values in the gray zone are classified as "possibly positive" and required to be tested again. Repetitive qPCR may not eliminate the uncertain results but increase the workload of detection. CRISPR/Cas12a can specifically recognize the nucleic acid of the nM level and then indiscriminately slash the single-strand DNA with multiple turnovers. In this way, the detection signals can be greatly amplified. Here, we propose a CRISPR-based checking method to solve gray zone problems. After qPCR testing, the screening gray zone samples can be successfully checked by the CRISPR/Cas12a method. Furthermore, to conduct CRISPR reaction assay more conveniently and prevent possible aerosol contamination in the operational process, a gray zone checking cassette is designed. African swine fever virus (ASFV) is selected as an example to demonstrate the feasibility of the CRISPR-based checking method. Of 28 real swine blood samples, 6 ASFV qPCR gray zone samples are successfully checked. The CRISPR-based checking method provides a novel solution to eliminate gray zone sample problems with no additional effects on the PCR, which is operable and applicable in practical detection. The entire process can be completed within 10-15 min. This method will be a good supplementary and assistance for qPCR-based detection, especially in the diagnosis of diseases such as COVID-19.


Subject(s)
African Swine Fever Virus , COVID-19 , Animals , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Polymerase Chain Reaction , SARS-CoV-2 , Swine
15.
Chem Eng J ; 420: 127575, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-898556

ABSTRACT

Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL