Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Zeitschrift fur Arznei & Gewurzpflanzen ; 25(4):153-156, 2020.
Article in German | CAB Abstracts | ID: covidwho-2073887

ABSTRACT

This paper presents the results of studies con ducted to determine the biologically active compounds of some Mexican desert plants (Florensia cernua, Larrea tridentata and Lippia graveolens) against the protease Mpro and the replicase RdRp of SARS coronavirus-2 using in silico molecular docking method. Results showed that against Mpro, luteolin-7-O-glucoside (L. graveolens) has the highest binding energy, followed by kaempferol and quercetin (L. tridentata). The values determined were higher than those detected in the antiviral chemical compounds lopinavir and ribavirin. Also, the binding energy of luteolin-7-O-glucoside against RdRp was higher than that in remdesivir, lopinavir and ribavirin. The compounds nordihydroguajaretic acid and kaempferol from L. tridentata and 3,8,8'-trimethoxy-3'-(1-iperidinyl)-2,2'-binaphthalene-1,1',4,4'-tetrone from F. cernua also showed a higher affinity potential against RdRp than the antiviral drugs. based on the results, the compounds present in the semi-desert plants acted as potential inhibitors against the Mpro and RdRp proteins of the SARS coronavirus 2 (SARS-CoV-2).

2.
African Journal of Infectious Diseases ; 16(2):80-96, 2022.
Article in English | CAB Abstracts | ID: covidwho-2056737

ABSTRACT

Background: The 2'-O-methyltransferase is responsible for the capping of SARS-CoV-2 mRNA and consequently the evasion of the host's immune system. This study aims at identifying prospective natural inhibitors of the active site of SARS-CoV-2 2'O-methyltransferase (2'-OMT) through an in silico approach. Materials and Method: The target was docked against a library of natural compounds obtained from edible African plants using PyRx - virtual screening software. The antiviral agent, Dolutegravir which has a binding affinity score of -8.5 kcal mol-1 with the SARS-CoV-2 2'-OMT was used as a standard. Compounds were screened for bioavailability through the SWISSADME web server using their molecular descriptors. Screenings for pharmacokinetic properties and bioactivity were performed with PKCSM and Molinspiration web servers respectively. The PLIP and Fpocket webservers were used for the binding site analyses. The Galaxy webserver was used for simulating the time-resolved motions of the apo and holo forms of the target while the MDWeb web server was used for the analyses of the trajectory data.

3.
Journal of Tropical Medicine ; 21(9):1119-1124, 2021.
Article in Chinese | CAB Abstracts | ID: covidwho-2047145

ABSTRACT

Objective: To investigate the effects of miR-221-3p on the proliferation and apoptosis of vascular smooth muscle cells (VSMC) in abdominal aortic aneurysm (AAA) by targeting tissue inhibitor of metalloproteinase- 2 (TIMP-2).

4.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(3):345-345, 2022.
Article in English, Chinese | CAB Abstracts | ID: covidwho-2034497

ABSTRACT

Since the outbreak of the new crown pneumonia, the new coronavirus (SARSCoV-2) has been mutating continuously, and it has now become prevalent in more than 200 countries. The cumulative number of confirmed cases in the world has exceeded 460 million, and the number of deaths has exceeded 6 million. The rapid mutation of SARS-CoV-2 highlights the importance of preventive and therapeutic drugs, however, effective therapeutic drugs for new coronary pneumonia are still very scarce. It is still the common goal of scientists from all over the world to develop a safe and effective drug for the treatment of new coronary pneumonia that can inhibit the infection of multiple SARS-CoV-2 mutant strains.

5.
Aroma Research ; 21(4):316-325, 2020.
Article in Japanese | CAB Abstracts | ID: covidwho-2034173

ABSTRACT

Stress such as uncertainty about the future, including the problem of new coronavirus infection, is a very serious problem not only for physical health but also for mental health. It is certain that stress is one of the risk factors for developing mental disorders. We have found stress-responsive biomarker (stress marker) candidates through studies on the process from stress to disease onset. Recently, we have been trying to prove the stress-suppressing effect of aroma with brain factors. We analyzed how aroma affects behavioral changes due to stress and the expression of stress marker candidates in the brain. In this article, the data on aroma that we have accumulated so far will be introduced. Specifically, we will describe changes happened in experimental animals when they smelled coffee beans, lavender, cypress, a-pinene, and thyme linalool. When considering the biological effects of aroma, it is inevitable that not only the olfactory pathway but also odor molecules act through the bloodstream by nasal and transdermal absorption. The brain transferability of odor molecules may be a bottleneck in analyzing the biological effects of volatile components. Thus, we would like to discuss on this issue.

6.
Chinese Journal of Nosocomiology ; 32(8):1271-1275, 2022.
Article in English, Chinese | CAB Abstracts | ID: covidwho-2011252

ABSTRACT

OBJECTIVE: COVID-19 continues to spread globally, which poses a significant threat to global public health security. Recently, the emergence of new variant strains of SARS-CoV-2 complicates the containment of COVID-19 due to its rapid transmission, high infectivity, high viral load, atypical symptoms and high number of severe cases. In order to further understand the transmission route, pathogenesis and pathological changes of COVID-19, and accelerate the research and development of antiviral drugs and vaccines, animal models of COVID-19 have played an important role in this process. The status of research on different animal models of COVID-19 was reviewed, the characteristics were compared among the models so as to provide theoretical basis for selecting appropriate animal models of COVID-19.

7.
Pharmacognosy Reviews ; 16(32):62-69, 2022.
Article in English | CAB Abstracts | ID: covidwho-2002632

ABSTRACT

Edible vaccines are created from transgenic plants and animals and contain immunostimulant. Edible vaccines, to put it simply, are medications generated from plants or animals. In underdeveloped countries, oral vaccines are less expensive and more widely available. Researchers came up with the idea of edible vaccines, in which edible plant pieces are employed as a vaccine factory. To make edible vaccinations, scientists put desired genes into plants and then force the plants to generate the proteins expressed in the genes. Transgenic plants are the result of transformation, whereas transformation is the act of converting plants. The edible vaccination promotes mucosal immunity. Dendritic cells in the gut can assist native T cells activate and differentiate into follicular T-helpers (Tfh). T and B cells will respond precisely to a reliable, digestible immunization. Potato, tomato, banana, carrots, tobacco, papaya, algae, and a variety of other plants are utilised as alternative agents for standard vaccinations. Malaria, cholera, hepatitis, rabies, measles, rotavirus, diarrhoea cancer treatments and treatment of covid-19 are among the illnesses for which plant-based vaccines have been created. It takes time and dedication to develop and sell edible vaccinations. Many edible vaccines for animal and human ailments have been developed and have gone through various levels of clinical testing. The importance of plant-based vaccinations is emphasized in this article.

8.
Genetics & Applications ; 5(2):1-9, 2021.
Article in English | CAB Abstracts | ID: covidwho-1994923

ABSTRACT

The genus Artemisia (fam. Asteraceae) is one of the largest and widely distributed with around 500 species, majority used as aromatic and medicinal plants. Artemisia annua L. is widely used as a dietary spice, herbal tea, as a supplement, and in a non-pharmaceutical form for treatment of malaria and fever. It is orally consumed as capsules, extracts and tinctures and topically applied as an essential oil diluted in lotions and ointments. Artemisinin is the main constituent of Artemisia annua L. extracts. Since the discovery that the artemisinin is efficient in malaria treatment, there is also a growth in consumption of A. annua extracts for antitumour and even recently for antiviral treatments against SARS-CoV-2 infections. This study aimed to investigate genotoxic effect in peripheral blood culture and cytotoxic effects in cancer and normal cell lines, of commercially available A. annua L. tincture in series of dilutions. Both comet and neutral red uptake assays revealed dose-dependent genotoxicity and cytotoxicity of A. annua tincture dilutions. Comet assay revealed significantly increased DNA damage in peripheral blood cells while neutral-red assays showed increase in cytotoxicity (p<0.001) in both normal and cancer cell cultures treated with the lowest extract dilution compared to the highest one applied. Obtained results indicate caution needed in A. annua L. tincture use, especially when poorly diluted.

9.
Disease Surveillance ; 37(4):445-452, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1994243

ABSTRACT

Immunobiotics, a group of probiotics, have the effect of anti-infection by regulating immune function, which can be added in in foods or used to make adjuvants or medicines (biologics). Immunobiotics can stimulate the mucosal immune system of the body, regulate innate and acquired immunity and exert non-specific anti-microbial (bacterial and viral) infection effects through oral, nasal mucosa, sublingual and other routes, but the immune regulation function of immunobiotics is species-specific. Oral administration of Lactobacillus plantarum GUANKE stimulated the increase and maintenance of SARS-CoV-2 neutralization antibodies in mice even 6 months after immunization. When L. plantarum GUANKE was given immediately after SARS-CoV-2 vaccination, the level of SARS-COV-2 specific neutralizing antibody in bronchoalveolar lavage increased by 8 times in mice, which improved the local and systematic cellular immune response to SARS-CoV-2 of mice. Clinical studies have found that immunobiotics have the auxiliary effect in the treatment of COVID-19 by mitigating the symptoms and increase the level of SARS-CoV-2 specific antibody of the patients. It is necessary to conduct research and evaluation for the appropriate guideline of immunobiotics use as erly as possible to provide a new option for the prevention and control of COVID-19.

10.
Menara Perkebunan ; 90(1):11-22, 2022.
Article in Indonesian | CAB Abstracts | ID: covidwho-1934873

ABSTRACT

The SARS-CoV-2 virus is a virus that emerged in late 2019 and has yet to find a cure. On the other hand, the incidence of cervical cancer in women continues to increase along with the emergence of cases of COVID-19 caused by SARS-CoV-2. Based on WHO data in 2020 stated that there were 107 per 72,314 cancer patients infected with SARS-CoV-2. Meniran (Phyllanthus niruri L.) is a herbaceous plant in Indonesia that has secondary metabolites derived from the tannin group, such as corilagin. This compound has the potential to be developed as an antiviral and anticancer agent. Thus, the purpose of this study was to determine the potential of corilagin in meniran herbs to act as an antiviral SARS-CoV-2 and cervical anticancer compared to the drug compounds molnupiravir and paclitaxel through the STITCH & STRING bioinformatics in silico test and molecular docking method. The results of the bioinformatics test of corilagin against the SARS-CoV-2 virus showed predictions of high protein binding to AGTR2 and ENPEP with a docking score of -10.9 and -9.9 kcal/mol, respectively. Meanwhile, cervical cancer cells showed the highest predicted protein binding to IL-10 and MAPK3 with a docking score of -10.5 and -10.8 kcal/mol. The docking score of molnupiravir against the COVID-19 virus protein, AGTR2, and ENPEP were -7.4 and -7.2 kcal/mol, respectively. The docking scores of paclitaxel for IL10 and MAPK3 were -8.2 and -8.9 kcal/mol, respectively. These values indicate that the activity of corilagin with proteins AGTR2, ENPEP, IL10, and MAPK3 has stronger affinity energy than the comparison drugs molnupiravir and paclitaxel. Thus, the corilagin compound from the tannin group in meniran (Phyllanthus niruri L.) has the potential to be developed and formulated as a treatment and prevention of SARS-CoV-2 antiviral and cervical anticancer.

11.
Revista Cubana de Plantas Medicinales ; 27(1), 2022.
Article in Spanish | CAB Abstracts | ID: covidwho-1929327

ABSTRACT

Introduction: The world has been suffering from the SARS-CoV-2 (COVID-19) pandemic since December 2019. To date there is no specific treatment for such a deadly disease, but there are some plants with different phytochemical components that help the body to combat and reduce the sequelae along with the other treatments.

12.
Natural Product Communications ; 17(6), 2022.
Article in English | CAB Abstracts | ID: covidwho-1909973

ABSTRACT

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is causing coronavirus disease 2019 (COVID-19) pandemic. Ancient Chinese herbal formulas are effective for diseases caused by viral infection, and their effects on COVID-19 are currently being examined. To directly evaluate the role of Chinese herbs in inhibiting replication of SARS-CoV-2, we investigated how the phytochemicals from Chinese herbs interact with the viral RNA-dependent RNA polymerase (RdRP). Total 1025 compounds were screened, and then 181compounds were selected for molecular docking analysis. Four phytochemicals licorice glycoside E, diisooctyl phthalate, (-)-medicocarpin, and glycyroside showed good binding affinity with RdRp. The best complex licorice glycoside E/RdRp forms 3 hydrogen bonds, 4 hydrophobic interactions, 1 pair of Pi-cation/stacking, and 4 salt bridges. Furthermore, docking complexes licorice glycoside E/RdRp and diisooctyl phthalate/RdRp were optimized by molecular dynamics simulation to obtain the stable conformation. These studies indicate that they are promising as antivirals against SARS-CoV-2.

13.
Northwest Pharmaceutical Journal ; 36(6):1027-1033, 2021.
Article in Chinese | CAB Abstracts | ID: covidwho-1905432

ABSTRACT

Objective: This study summarized the recent traditional Chinese medicines(TCM) used in the treatment of coronavirus disease 19(COVID-19) and analyzed the existing problems, therefore to provide basis for their further development and rational application.

14.
Northwest Pharmaceutical Journal ; 36(6):927-933, 2021.
Article in Chinese | CAB Abstracts | ID: covidwho-1904960

ABSTRACT

Objective: To investigate the possible mechanism of Platycodonis Radix-Licorice drug pair in the intervention of COVID-19 by using network pharmacology and molecular docking technique. Methods The database TCMSP was retrieved for the chemical constituents and targets of Platycodonis Radix-Licorice drug pair. Coronavirus disease targets were screened by the Gene Cards, OMIM,TTD, PharmGkb and DrugBank database. Cytoscape 3.7.2 software was used to construct the drug-component-target network. The PPI(protein-protein interaction) network was obtained by drug-disease intersection targets, and the core genes were found through CytoNCA plug-in. Meanwhile, GO(gene ontology) analysis and KEGG(Kyoto encyclopedia of genes and genomes) pathway analysis were performed by using Bioconductor database to predict the mechanism. AutoDock Tools 1.5.6 software was used to simulate the molecular docking of the main active ingredients with the novel coronavirus key binding site protein [SARS-CoV-2 main protease(severe acute respiratory syndrome coronavirus 2 main protease, Mpro) and ACE2(angiotensin converting enzyme 2)]. Results A total of 7 active ingredients of Platycodonis Radix,92 active ingredients of Licorice,2766 drug targets, and 674 disease targets were obtained, and 67 drug-disease common targets were excavated. The key targets involved RELA,STAT1,MAPK3,TP53,MAPK1,MAPK8,STAT3,MAPK14,IL1 B and TNF by the database STRING and CytoNCA plug-in.Go enrichment analysis showed that the main functions of Platycodonis Radix-Licorice drug pair on the intervention of COVID-19 were antioxidant reaction, cell respond to chemical stress, regulation of apoptotic signaling pathways, reaction to lipopolysaccharides and reaction to bacteria-derived molecules, etc.. KEGG pathways involved Coronavirus disease-COVID-19 pathway, IL-17 signaling pathway and so on, were mainly associated with immune response, inflammation-related pathways, inhibition of viral infection, and other inhibition of cancer. The molecular docking results showed that glepidotin A,quercetin, licochalcone a and luteolin had good binding ability with Mpro and ACE2. Conclusion Platycodonis Radix-Licorice drug pair act on SARS-CoV-2 through multiple components, multiple targets, and multiple channel combination. And the main active ingredients have a fine binding ability with Mpro and ACE2. The method can provide theoretical support for the possibility of traditional Chinese medicine(TCM) against COVID-19.

15.
Northwest Pharmaceutical Journal ; 36(6):1038-1042, 2021.
Article in Chinese | CAB Abstracts | ID: covidwho-1904738

ABSTRACT

Objective: To review the treatment status of coronavirus disease 19 (COVID-19) and summarize the drug development progress based on herbs, so as to provide references for the efficient and safe application of drugs of anti-COVID-19 from plants.

16.
China Tropical Medicine ; 22(4):293-297, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1903924

ABSTRACT

Objective: To identify the T cell epitopes of the COVID-19 vaccine carrying SARS-CoV-2 S, N and M genes in BALB/c mice.

17.
Drug Evaluation Research ; 45(5):842-852, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1903835

ABSTRACT

Objective: To explore the potential common mechanism and active ingredients of Reduning Injection against SARS, MERS and COVID-19 through network pharmacology and molecular docking technology.

18.
Pharmacognosy Journal ; 14(1):85-90, 2022.
Article in English | CAB Abstracts | ID: covidwho-1903772

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19 which is responsible for respiratory illness infection in humans. The virus was first identified in China in 2019 and later spread to other countries worldwide. This study aims to identify the bioactive compounds from mangosteen (Garcinia mangostana L.) as an antiviral agent via dual inhibitor mechanisms against two SARS-CoV-2 proteases through the in silico approach. The three-dimensional structure of various bioactive compounds of mangosteen from the database was examined. Furthermore, all the target compounds were analyzed for drug, antiviral activity prediction, virtual screening, molecular interactions, and threedimensional structure visualization. It aimed to determine the potential of the bioactive compounds from mangosteen that can serve as antiviral agents to fight SARS-CoV-2. Results showed that the bioactive compounds from mangosteen have the prospective to provide antiviral agents that contradict the virus via dual inhibitory mechanisms. In summary, the binding of the various bioactive compounds from mangosteen results in low binding energy and is expected to have the ability to induce any activity of the target protein binding reaction. Therefore, it allows various bioactive compounds from mangosteen to act as dual inhibitory mechanisms for COVID-19 infection.

19.
Journal of Traditional Thai and Alternative Medicine ; 20(1):150-166, 2022.
Article in Thaï | CAB Abstracts | ID: covidwho-1898237

ABSTRACT

COVID-19 is a contagious disease caused by SARs-CoV-2 which has been spreading all over the world. The disease extensively affects human health and lives as well as the public health system, society and economy. It is therefore the worst pandemic problem that all countries pay great attention to, including Thailand, where the number of deaths from COVID-19 is constantly increasing. Meanwhile, in China, the number of infections and deaths can be quickly controlled since the beginning of the outbreak. The key factors in its success are strict lockdowns and screenings. China is also the first country that has applied traditional Chinese medicine (TCM) in combination with Western medicine to treat COVID-19, making it possible to prevent and control the unpleasant circumstance of COVID-19 pandemic. The National Health Commission of the People's Republic of China has issued an official announcement on the treatment protocol for COVID-19 patients (Trial Version 8) on August 18, 2020. This protocol describes the methods for treating COVID-19 by using Chinese herbal medicines, acupuncture and moxibustion. This study reviews the results of traditional Chinese medications for preventing and treating COVID-19 as well as the COVID-19 in TCM's perspective so that people have better understanding and knowledge about COVID-19 prevention and self-care based on TCM guidelines.

20.
Northwest Pharmaceutical Journal ; 37(2):44-50, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1897812

ABSTRACT

Objective: To explore the network regulation mechanism of Huoxiang Zhengqi Oral Liquid(HXZQ) in the treatment of coronavirus disease 19 (COVID-19).

SELECTION OF CITATIONS
SEARCH DETAIL