Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 574
Filter
1.
Chemical Engineering Journal ; 452, 2023.
Article in English | Scopus | ID: covidwho-2246182

ABSTRACT

Metal-organic frameworks (MOFs) featuring composition and bandstructure diversity, are an emerging class of photoresponsive disinfectants. In this study, we demonstrated the superiority of core–shell arranged photoactive MOFs (prussian blue (PB) and zeolitic imidazolate framework (ZIF-8)) for pathogen inactivation in terms of biocidal efficiency and broad-spectrum sensitivity. Reactive oxygen species (ROS) production was significantly promoted after the integration of PB due to the photosensitization effect and initiation of in situ Fenton reaction. Favorably, another inactivation channel was also opened owing to the unique photothermal effect of PB. Attributed to the facilitated ROS intracellular penetration by heat, the composite outperforms not only individual component but anatase TiO2 in pathogen elimination. Specifically, the Staphylococcus aureus (S. aureus) inactivation efficiency of the composite (6.6 log) is 2, 1.8 and 5.1 times higher than that of PB (3.3 log), ZIF-8 (3.7 log) and TiO2 (1.3 log) over 45 min of simulated sunlight illumination. Significantly, the infectivity of Bacillus anthracis and murine coronavirus in droplets on composite-coated filter surface could be greatly reduced (approximately 3 log reduction in colony number/coronavirus titer) within few minutes of solar exposure, indicative of the great potential of MOF composites toward life-threatening microbial infection prevention. © 2022 Elsevier B.V.

2.
Lecture Notes in Electrical Engineering ; 927:715-723, 2023.
Article in English | Scopus | ID: covidwho-2245999

ABSTRACT

The newly discovered infectious disease COVID-19 infected many people. The coronavirus causes respiratory problems and also gets affected in many parts of the human body. This virus is transmitted from one body to another body through the air or by touch. The only way to stop the transmission is to use a mask on the face and washing or sanitizing hands frequently. Sanitizers are liquid, gel, or foam which is designed to eliminate germs on skin or any other object. In daily lives also sanitization is necessary to prevent various germs which can make you ill. One of the main modes of contact with germs is our hands because in our daily lives we touch many infected surfaces and objects unknowingly hence to prevent any type of illness due to those germs, hand sanitization is necessary, especially for a person working in a closed and congested environment like offices, canteens, restaurants, schools, etc. This paper aims to design a low-cost Arduino-based automatic sanitizer dispenser-controlled door and it will be of great help in public places where people don't follow hand hygiene properly. This automatic sanitizer system will be placed at the entry point of the main gate and it will only allow entry from that gate if and only if the person goes through the sanitization process first. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

3.
Materials Today: Proceedings ; 72:3442-3446, 2023.
Article in English | Scopus | ID: covidwho-2239752

ABSTRACT

Protective facemasks made of non-woven fabric are widely used during the Covid-19 pandemic. In the literature, it is reported that the surface properties of the facemasks are among the factors that could influence their filtration efficiency. Moreover, these properties could even have an effect on the step that precedes the filtration, which consists in the adhesion of the microorganism on the surface of these facemasks. In this study, we evaluate electron donor and acceptor character of the surface of five colored masks made of non-woven fabric using the contact angle method. The contact angle measurements showed that the five masks used in this work are classified as hydrophobic while the electron donor/acceptor character varies according to the color of the five facemasks. These results are discussed in terms of their potential impact on adhesion of microorganisms on the surface of the mask. © 2023

4.
Graefes Arch Clin Exp Ophthalmol ; 2022 Aug 06.
Article in English | MEDLINE | ID: covidwho-2243725

ABSTRACT

PURPOSE: To investigate whether compulsory face masking in public life changes the incidence or pattern of post-injection endophthalmitis (PIE). PATIENTS AND METHODS: All injections of bevacizumab, ranibizumab, aflibercept, dexamethasone or triamcinolone between 01/01/2015 and 12/31/2021 at the University Eye Clinic of Tuebingen were included in this retrospective analysis. The injection procedure itself was unchanged since 2015 and included the use of a sterile drape covering the head up to the shoulders which prevents airflow toward the eye. Furthermore, all staff wore a face mask and gloves at all times. The two study periods were defined by the introduction of a compulsory face masking rule in public life (01/01/2015 until 04/27/2020 vs. 04/28/2020 until 12/31/2021). RESULTS: A total of 83,543 injections were performed in the tertiary eye clinic, associated with a total of 20 PIE (0.024%, 1/4177 injections). Of these, thirteen PIE were documented during the pre-pandemic period (0.021%, 1/4773 injections) and seven PIE during the pandemic period (0.033%, 1/3071 injections). No significant difference in PIE risk was observed (p = 0.49), and there was no case of oral flora associated PIE. CONCLUSION: Although some potential confounders (wearing time, skin flora) could not be considered, there was no clear signal that the introduction of compulsory face masking in public life did alter the risk for PIE in our patient population. Three and six months after PIE, no difference in visual acuity was detectable between the two study periods.

5.
Int J Biol Macromol ; 2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2240507

ABSTRACT

This study aims to fully exploit the natural compound; bee venom (BV) as a substance that can kill and inhibit the growth of microbes and viruses. For this target, BV was loaded onto a safe, natural, and economically inexpensive polymer, which is chitosan (Ch) in its nano-size form using the ionic gelation method and chemical crosslinking agent (sodium tripolyphosphate; TPP). The findings illustrated that chitosan nanoparticles (ChNPs) were prepared thru this method exhibited spherical shape and average hydrodynamic size of 202 nm with a polydispersity index (PDI = 0.44). However, the size was increased to 221 nm and PDI (0.37) when chitosan nanoparticles were loaded with BV (ChNC). In addition, the particles of BV appeared as a core and chitosan nanoparticles as a shell implying the successful preparation of nanocomposite (ChNC) that based on the. Encapsulation of BV into ChNPs with significantly small size distribution and good stability that protect these formed nanocomposites from agglomeration. The cytopathic effect (CPE) inhibition assay was used to identify potential antivirals for Middle East respiratory syndrome coronavirus (MERS-CoV). The response of the dose study was designed to influence the range of effectiveness for the chosen antiviral, i.e., the 50 % inhibitory concentration (IC50), as well as the range of cytotoxicity (CC50). However, our results indicated that crude BV had mild anti-MERS-COV with SI = 4.6, followed by ChNPs that exhibited moderate anti-MERS-COV with SI = 8.6. Meanwhile. The nanocomposite of ChNC displayed a promising anti-MERS-COV with SI = 12.1. Additionally, the synthesized nanocomposite (ChNC) had greater antimicrobial activity against both Gram-positive and Gram-negative bacteria when compared with ChNPs, BV or the utilized model drug.

6.
JHEP Rep ; 5(5): 100703, 2023 May.
Article in English | MEDLINE | ID: covidwho-2240261

ABSTRACT

Background & Aims: Bacterial infections affect survival of patients with cirrhosis. Hospital-acquired bacterial infections present a growing healthcare problem because of the increasing prevalence of multidrug-resistant organisms. This study aimed to investigate the impact of an infection prevention and control programme and coronavirus disease 2019 (COVID-19) measures on the incidence of hospital-acquired infections and a set of secondary outcomes, including the prevalence of multidrug-resistant organisms, empiric antibiotic treatment failure, and development of septic states in patients with cirrhosis. Methods: The infection prevention and control programme was a complex strategy based on antimicrobial stewardship and the reduction of patient's exposure to risk factors. The COVID-19 measures presented further behavioural and hygiene restrictions imposed by the Hospital and Health Italian Sanitary System recommendations. We performed a combined retrospective and prospective study in which we compared the impact of extra measures against the hospital standard. Results: We analysed data from 941 patients. The infection prevention and control programme was associated with a reduction in the incidence of hospital-acquired infections (17 vs. 8.9%, p <0.01). No further reduction was present after the COVID-19 measures had been imposed. The impact of the infection prevention and control programme remained significant even after controlling for the effects of confounding variables (odds ratio 0.44, 95% CI 0.26-0.73, p = 0.002). Furthermore, the adoption of the programme reduced the prevalence of multidrug-resistant organisms and decreased rates of empiric antibiotic treatment failure and the development of septic states. Conclusions: The infection prevention and control programme decreased the incidence of hospital-acquired infections by nearly 50%. Furthermore, the programme also reduced the prevalence of most of the secondary outcomes. Based on the results of this study, we encourage other liver centres to adopt infection prevention and control programmes. Impact and implications: Infections are a life-threatening problem for patients with liver cirrhosis. Moreover, hospital-acquired infections are even more alarming owing to the high prevalence of multidrug-resistant bacteria. This study analysed a large cohort of hospitalised patients with cirrhosis from three different periods. Unlike in the first period, an infection prevention programme was applied in the second period, reducing the number of hospital-acquired infections and containing multidrug-resistant bacteria. In the third period, we imposed even more stringent measures to minimise the impact of the COVID-19 outbreak. However, these measures did not result in a further reduction in hospital-acquired infections.

7.
Vet Microbiol ; 280: 109701, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2239145

ABSTRACT

A hierarchical cluster analysis was used to classify outbreaks of bovine respiratory disease (BRD; n = 156) in natural groups according to the detection of nine pathogens (parainfluenza 3 virus (PI-3), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BCV), bovine viral diarrhea virus (BVDV), and bovine herpesvirus 1 (BHV-1), Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Pathogens were detected by individual q-PCRs. Two clusters were identified. Cluster 1 was characterized by a relatively high frequency (40-72%) of four BRD-associated viruses, supporting their primary involvement in BRD. Cluster 2 was characterized by frequencies of PI-3, BRSV, or BVDV below 10% each. P. multocida and M. haemolytica were detected with high frequencies in both clusters (P > 0.05), while M. bovis and H. somni showed a significantly higher frequency in cluster 1and 2, respectively. Outbreaks in cluster 1 were associated with preweaning calves younger than 5 months (OR 2.2; 95% CI 1.1-4.5) and with cold months, whereas cluster 2 was associated with fattening calves older than 5 months after arrival to feedlots and without any seasonality. Thus, in addition to the classic epidemiological BRD pattern characterized by the primary involvement of viruses occurring preferably during winter and affecting young calves, there is a second pattern in which viruses would be less relevant, affecting mainly calves older than 5 months at any time of the year. This study allows a better understanding of the BRD epidemiology, which can be useful when implementing management and prophylaxis measures for a better control of this disease.

8.
Microbiol Spectr ; 11(1): e0238522, 2023 Feb 14.
Article in English | MEDLINE | ID: covidwho-2242904

ABSTRACT

Dalbavancin is a second-generation lipoglycopeptide antibiotic with activity against Gram-positive organisms. Dalbavancin is Food and Drug Administration (FDA)-approved for acute bacterial skin and soft tissue infections (ABSSTIs). There is a lack of substantial data on dalbavancin in more invasive infections, particularly in high-risk populations (patients with intravenous drug use and unstable living conditions). In this retrospective observational study, we reviewed all patients that received at least one dose of dalbavancin in an inpatient or outpatient setting at Parkland Hospital from February of 2019 to August of 2021. The demographics, type of infection, and rationale for dalbavancin were collected at the baseline. Clinical failure was measured by an avoidance of emergency department (ED) visits or hospital readmission at 30, 60, and 90 days. A separate analysis was conducted to estimate hospital, rehabilitation, or nursing facility days saved based on the projected length of treatment. 40 patients were included, and the majority were uninsured (85%), experiencing homelessness (60%), or had intravenous drug use (IDU) (57.5%). Indications for use included ABSSTIs (45%), bloodstream infection (67.5%), osteomyelitis (40%), infective endocarditis (10%), and septic arthritis (10%). Clinical failure was observed in 5 of the 40 patients (12.5%). Nonadherence to medical recommendations, a lack of source control, and ongoing IDU increased the risk of failure. Dalbavancin saved a total of 566 days of inpatient, rehabilitation, and nursing facility stays. Dalbavancin is a reasonable alternative to the standard of care in an at-risk population, offering decreased lengths of stays and cost savings. The uses of second-generation lipoglycopeptides are desirable alternatives to traditional outpatient parenteral antibiotic therapies for patients who otherwise would not qualify or for patients who desire less hospital contact in light of the COVID-19 pandemic. IMPORTANCE This study contributes additional experience to the literature of dalbavancin use in off-label indications, particularly for patients who do not qualify for outpatient parenteral antimicrobial therapy. The majority of the patient population were people who inject drugs and the uninsured. There is difficulty in tracking outcomes in this patient population, given their outpatient follow-up rates; however, we were able to track emergency room visits and readmissions throughout the majority of the local metroplex. The clinical use of dalbavancin at our institution also increased in the midst of the COVID-19 pandemic in an effort to preserve hospital resources and limit health care exposure. In addition, we are able to provide institution-specific cost-saving data with the use of dalbavancin.


Subject(s)
COVID-19 , Gram-Positive Bacterial Infections , Humans , Anti-Bacterial Agents , Cost Savings , Gram-Positive Bacterial Infections/microbiology , Pandemics , Safety-net Providers
9.
Adv Mater ; 35(11): e2210949, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2242815

ABSTRACT

Approaches capable of simultaneously treating cancer and protecting susceptible patients from lethal infections such as coronavirus disease 2019, are highly desirable but prove to be difficult. Here, dressing bacteria with a hybrid immunoactive nanosurface is reported to elicit dual anticancer and antiviral immunity. A combination of a checkpoint blocking antibody and a virus-specific antigen is covalently conjugated to polydopamine nanoparticles, which can be anchored onto bacterial surface, by a one-step in situ polymerization of dopamine under a cell-friendly condition. By virtue of the ability to colonize and penetrate deep tumor tissue, dressed bacteria enable sustained release and expanded exposure of carried immunoactivators to stimulate immune cells. In addition to a carrier role, bacteria are able to further provoke innate immunity due to the native immunogenicity of the pathogen-associated molecular patterns. Immunization with dressed bacteria promotes the maturation, and activation of antigen-presenting cells, which induces robust humoral and cellular immune responses in tumor-bearing mice. As evidenced by efficient production of viral-antigen-specific immunoglobulin G antibody in serum and significantly suppressed tumor growth in different models, dressing bacteria with a hybrid immunoactive nanosurface paves an avenue to prepare next-generation therapeutics for synergistic treatment and prevention.

10.
The Lancet Infectious Diseases ; 23(2):161.0, 2023.
Article in English | ProQuest Central | ID: covidwho-2229448

ABSTRACT

Brain aging and COVID-19 Many biological pathways that change with natural aging in the brain also changed in patients with severe COVID-19, say researchers who used RNA sequencing to assess changes in gene expression profiles in the brain of COVID-19 patients compared with uninfected individuals. The scientists observed that gene expression in the brain tissue of patients who died of COVID-19 closely resembled that of uninfected individuals aged 71 years or older. In genetially modified mice, the emergency mode of haematopoiesis ran without any detectable infection or increased interferon levels and these genetically modified animals were better able to fight off infection with the bacterium Listeria monocytogenes than normal mice.

11.
Journal of Industrial Textiles ; 52, 2022.
Article in English | Scopus | ID: covidwho-2227307

ABSTRACT

During current COVID-19 crises, the antimicrobial textiles primarily those utilized in hospital by doctors and paramedical staff have become increasingly important. Thus, there is an unmet requirement to develop antimicrobial textiles for infection control and hygiene practices. Metallic nanoparticles exhibit great effectiveness towards resistant microbial species making them a potential solution to the increasing antibiotic resistance. Due to this, nanoparticles particularly copper and silver have become most prevalent forms of antibacterial finishing agents for the development of antimicrobial textiles. This review is mainly focused on the significance of copper and silver nanoparticles for the development of antimicrobial textiles. The comparative analysis of the antibacterial effectiveness of copper and silver nanoparticles as well as the possible physical and chemical interactions responsible for their antibacterial action are explained. The negative impact of pathogenic microbes on textiles and possible interactions of antimicrobial agents with microbes have also been highlighted. The significance of nanotechnology for the development of antimicrobial textiles and their applications in medical textiles domain have also been discussed. Various green synthesis and chemical methods used for the synthesis of Ag and Cu nanoparticles and their application on textile substrates to impart antimicrobial functionality have also been discussed. The various qualitative and quantitative standard testing protocols utilised for the antimicrobial characterization of textiles have also discussed in this review. The developed Cu and Ag coated textiles could be effectively applied in the field of hospital textiles for the preparation of antibacterial scrub suits, surgical gowns, panel covers, protective clothing, bedding textiles, coveralls, wound dressings, table covers, curtains, and chair covers etc. © The Author(s) 2022.

12.
16th ROOMVENT Conference, ROOMVENT 2022 ; 356, 2022.
Article in English | Scopus | ID: covidwho-2237175

ABSTRACT

With the large-scale outbreak of the COVID-19, people have gradually realized the importance of bioaerosols in the environment, and how to efficiently filter out microbial aerosols in the air, so as to create a safe and healthy air environment is urgent. The non-bacteriostatic F6 non-woven filter material and the synthesized new reduced graphene oxide air filter were tested and analyzed in this paper, and the filtration performance of the material against bacterial aerosols in the atmosphere at the initial stage of heating. The results showed that during the initial stage of heating, the particle size distributions of aerosols in the atmosphere during working days were stageⅠ(>7.0μm)4.34%, stageⅡ(4.7~7.0μm)4.62%, stageⅢ(3.3~4.7μm)13.30%, stageⅣ(2.1~3.3μm)21.11%, stageⅤ(1.1~2.1μm)38.70%, stageⅥ(0.65~1.1μm)17.92%. The particle size distributions of aerosols in the atmosphere on non-working days were stageⅠ(>7.0μm)4.52%, stageⅡ(4.7~7.0μm)13.66%, stageⅢ(3.3~4.7μm)23.04%, stageⅣ(2.1~3.3μm)31.82%, stageⅤ(1.1~2.1μm)15.18%, stageⅥ (0.65~1.1μm)11.78%. The new reduced graphene oxide filter material had a 10% increase in the filtration efficiency of the total bacterial aerosol compared with the ordinary non-woven filter material. Among them, the filtration efficiency of the respirable bacterial aerosol (particle size <4.7μm) was significantly improved by 40%. The results of this study could provide a certain reference for building a safe interior in the post-epidemic era, and also provided reference value for the research and development of functional air filters. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)

13.
Electrophoresis ; 2022 Jun 11.
Article in English | MEDLINE | ID: covidwho-2237441

ABSTRACT

Life-threatening diseases, such as hepatitis B, pneumonia, tuberculosis, and COVID-19, are widespread due to pathogenic bacteria and viruses. Therefore, the development of highly sensitive, rapid, portable, cost-effective, and selective methods for the analysis of such microorganisms is a great challenge. Microchip electrophoresis (ME) has been widely used in recent years for the analysis of bacterial and viral pathogens in biological and environmental samples owing to its portability, simplicity, cost-effectiveness, and rapid analysis. However, microbial enrichment and purification are critical steps for accurate and sensitive analysis of pathogenic bacteria and viruses in complex matrices. Therefore, we first discussed the advances in the sample preparation technologies associated with the accurate analysis of such microorganisms, especially the on-chip microfluidic-based sample preparations such as dielectrophoresis and microfluidic membrane filtration. Thereafter, we focused on the recent advances in the lab-on-a-chip electrophoretic analysis of pathogenic bacteria and viruses in different complex matrices. As the microbial analysis is mainly based on the analysis of nucleic acid of the microorganism, the integration of nucleic acid-based amplification techniques such as polymerase chain reaction (PCR), quantitative PCR, and multiplex PCR with ME will result in an accurate and sensitive analysis of microbial pathogens. Such analyses are very important for the point-of-care diagnosis of various infectious diseases.

14.
Adv Mater ; : e2204275, 2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-2231927

ABSTRACT

Biomaterials, which are substances interacting with biological systems, have been extensively explored to understand living organisms and obtain scientific inspiration (such as biomimetics). However, many aspects of biomaterials have yet to be fully understood. Because liquid crystalline phases are ubiquitously found in biomaterials (e.g., cholesterol, amphiphile, DNA, cellulose, bacteria), therefore, a wide range of research has made attempts to approach unresolved issues with the concept of liquid crystals (LCs). This review presents these studies that address the interactive correlation between biomaterials and LCs. Specifically, intrinsic LC behavior of various biomaterials such as DNA, cellulose nanocrystals, and bacteriaare first introduced. Second, the dynamics of bacteria in LC media are addressed, with focus on how bacteria interact with LCs, and how dynamics of bacteria can be controlled by exploiting the characteristics of LCs. Lastly, how the strong correlation between LCs and biomaterials has been leveraged to design a new class of biosensors with additional functionalities (e.g., self-regulated drug release) that are not available in previous systems is reviewed. Examples addressed in this review convey the message that the intersection between biomaterials and LCs offers deep insights into fundamental understanding of biomaterials, and provides resources for development of transformative technologies.

15.
J Infect ; 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2231595

ABSTRACT

OBJECTIVES: During the coronavirus disease 2019 (COVID-19) pandemic, a change in the trend of infections was observed. However, there are few reports comprehensively assessing the impact of the early phase of COVID-19 on the trend of bacteria isolated. METHODS: We extracted the number of positive cultures of hospitalized patients for approximately 200 institutions using the Japanese national database. The outcome was the ratio of 10 species isolated in comparison to the total isolates for each month. Interrupted time-series analyses were conducted between 13 (from Jan-2019 to Jan-2020) and 8 (from May-2020 to Dec-2020) monthly data points. RESULTS: A total of 369,210 isolates were involved. Differences in the level change for Streptococcus pneumoniae, Haemophilus influenzae, and Streptococcus pyogenes decreased significantly by 0.272 (95% confidence interval [CI]:0.192-0.352), 0.244 (95%CI:0.174-0.314), and 0.324 (95%CI:0.06-0.589), respectively. Bacteria transmitted by contact infection, such as Staphylococcus aureus, did not decrease. Differences in slope change were not significant in all species. CONCLUSIONS: The ratios of isolated bacteria transmitted by droplet infection decreased immediately after the early phase of COVID-19 and maintained the same level. The awareness and behavioral changes toward increased COVID-19 prevention might have a substantial impact on the prevention of bacterial infections, especially droplet infections.

16.
Int J Environ Res Public Health ; 20(4)2023 Feb 08.
Article in English | MEDLINE | ID: covidwho-2236648

ABSTRACT

Environmental challenges related to the mismanagement of plastic waste became even more evident during the COVID-19 pandemic. The need for new solutions regarding the use of plastics came to the forefront again. Polyhydroxyalkanoates (PHA) have demonstrated their ability to replace conventional plastics, especially in packaging. Its biodegradability and biocompatibility makes this material a sustainable solution. The cost of PHA production and some weak physical properties compared to synthetic polymers remain as the main barriers to its implementation in the industry. The scientific community has been trying to solve these disadvantages associated with PHA. This review seeks to frame the role of PHA and bioplastics as substitutes for conventional plastics for a more sustainable future. It is focused on the bacterial production of PHA, highlighting the current limitations of the production process and, consequently, its implementation in the industry, as well as reviewing the alternatives to turn the production of bioplastics into a sustainable and circular economy.


Subject(s)
COVID-19 , Polyhydroxyalkanoates , Humans , Pandemics , Plastics , Biopolymers , Biodiversity
17.
Trac-Trends in Analytical Chemistry ; 158, 2023.
Article in English | Web of Science | ID: covidwho-2221417

ABSTRACT

Functional nucleic acids (FNAs) are short, single-stranded nucleic acids that can be derived from synthetic nucleic acid libraries using test-tube selection experiments. Due to their excellent chemical stability, high binding affinities and specificities, compatibility with a variety of signal-transduction mechanisms, and ease of synthesis and modification, FNAs have a great potential to overcome some of the limitations of current pathogen diagnostic methods by acting as molecular recognition elements (MREs) for point-of-care testing. This review summarizes the development of FNA-based biosensors for viral and bacterial detection in clinical samples. We first discuss examples of selecting FNAs for recognizing biomarkers of viral and bacterial pathogens. This is followed by discussion on integrating FNAs into fluorescent, colorimetric, and electrochemical biosensors and applying these sensors towards clinically diagnosing infectious diseases caused by many important bacterial and viral pathogens. Finally, the challenges of making FNA-based biosensors for infectious diseases are provided. (c) 2022 Elsevier B.V. All rights reserved.

18.
Front Pharmacol ; 13: 832750, 2022.
Article in English | MEDLINE | ID: covidwho-2224846

ABSTRACT

Inflammation is an essential immune response of the host against infections but is often over-activated, leading to a variety of disorders. Autophagy, a conserved degradation pathway, also protects cells by capturing intracellular pathogens that enter the cell and transporting them to the lysosome for clearance. Dysfunctional autophagy is often associated with uncontrolled inflammatory responses during infection. In recent years, more and more research has focused on the crosstalk between autophagy and inflammation. In this paper, we review the latest research advances in this field, hoping to gain insight into the mechanisms by which the body balances autophagy and inflammation in infections and how this mechanism can be used to fight infections better.

19.
Cells ; 12(3)2023 02 02.
Article in English | MEDLINE | ID: covidwho-2225072

ABSTRACT

The outbreak of COVID-19 has positively impacted the NGS market recently. Targeted sequencing (TS) has become an important routine technique in both clinical and research settings, with advantages including high confidence and accuracy, a reasonable turnaround time, relatively low cost, and fewer data burdens with the level of bioinformatics or computational demand. Since there are no clear consensus guidelines on the wide range of next-generation sequencing (NGS) platforms and techniques, there is a vital need for researchers and clinicians to develop efficient approaches, especially for the molecular diagnosis of diseases in the emergency of the disease and the global pandemic outbreak of COVID-19. In this review, we aim to summarize different methods of TS, demonstrate parameters for TS assay designs, illustrate different TS panels, discuss their limitations, and present the challenges of TS concerning their clinical application for the molecular diagnosis of human diseases.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Genetic Testing/methods , Computational Biology , High-Throughput Nucleotide Sequencing/methods , Consensus , COVID-19 Testing
20.
Infect Drug Resist ; 15: 7001-7014, 2022.
Article in English | MEDLINE | ID: covidwho-2224582

ABSTRACT

Purpose: Critically ill patients hospitalized in the intensive care unit (ICU) have an increased infection risk. The aim of this study was to determine the bacterial and fungal superinfections rate in Coronavirus disease 2019 (COVID-19) patients stationed in the ICU, identify risk factors associated with their development and to determine whether superinfection plays a role in patients' outcome in this population. Patients and Methods: In this retrospective, non-interventional, single centre, cohort study, medical records of 302 consecutive patients with SARS-COV-2 pneumonia admitted into the COVID-19 ICU of the largest university hospital from Western Romania between October 2020 and May 2021, were reviewed, of whom 236 patients met the inclusion criteria. Results: One hundred and nineteen patients developed a superinfection ≥48 h after being admitted to the hospital. Superinfection rate in the ICU was 50.42%. Coagulase-negative Staphylococci (CoNS) and Enterococcus spp. were predominantly isolated from blood cultures, while Acinetobacter baumannii, Staphylococcus aureus and Candida spp. from tracheobronchial aspirates. Significant independent risk factors regarding bacterial/fungal superinfection in COVID-19 patients were obtained for the following variables: number of days of central venous catheter (HR = 1.13 [1.07-1.20], p < 0.001) and prior administration of corticosteroids (HR = 2.80 [1.33-5.93], p = 0.007). Four independent predictive risk factors were associated with unfavorable outcome: age (HR = 1.07 [95% CI 1.03-1.12], p = 0.001); Carmeli Score (HR = 6.09 [1.18-31.50], p = 0.031); body mass index (HR = 1.11 [1.02-1.21], p = 0.011) and the presence of a central venous catheter (HR = 6.49 [1.93-21.89], p = 0.003). Conclusion: The superinfection rate in COVID-19 patients was high in this study group. Exogenous risk factors were associated with superinfection more than endogenous factors. Only a small percentage of uninfected COVID-19 patients were not prescribed antibiotics during their hospitalization, raising serious concerns regarding the judicious prescribing of antibiotics in viral infections.

SELECTION OF CITATIONS
SEARCH DETAIL