Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Vet Med Sci ; 84(11): 1543-1550, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2065087

ABSTRACT

In this study, the viral genome extraction performance of automatic nucleic acid extractors and manual nucleic acid extraction kits was compared. We showed that compared with manual kits, the automatic extractors showed superior genome extraction performance using bovine viral diarrhea virus (BVDV) genome-positive cattle sera and bovine coronavirus/infectious bovine rhinotracheitis virus-spiked cattle nasal swabs. In addition, the subgenotyping of BVDV strains detected in Tokachi Province in Japan during 2016-2017 was performed. Results showed that most of these BVDV strains belonged to subgenotype 1b, while few strains belonged to subgenotypes 1a and 2a. This study showed the high applicability of automatic nucleic acid extractors in extracting multiple viral genomes and the dominant subgenotype of BVDV in Tokachi.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle Diseases , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Nucleic Acids , Cattle , Animals , RNA, Viral/genetics , Japan , Genotype , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea/veterinary , Magnetic Phenomena , Diarrhea Virus 1, Bovine Viral/genetics , Phylogeny
2.
Viruses ; 14(10)2022 09 27.
Article in English | MEDLINE | ID: covidwho-2043991

ABSTRACT

Bovine coronavirus (BCoV) has spilled over to many species, including humans, where the host range variant coronavirus OC43 is endemic. The balance of the opposing activities of the surface spike (S) and hemagglutinin-esterase (HE) glycoproteins controls BCoV avidity, which is critical for interspecies transmission and host adaptation. Here, 78 genomes were sequenced directly from clinical samples collected between 2013 and 2022 from cattle in 12 states, primarily in the Midwestern U.S. Relatively little genetic diversity was observed, with genomes having >98% nucleotide identity. Eleven isolates collected between 2020 and 2022 from four states (Nebraska, Colorado, California, and Wisconsin) contained a 12 nucleotide insertion in the receptor-binding domain (RBD) of the HE gene similar to one recently reported in China, and a single genome from Nebraska collected in 2020 contained a novel 12 nucleotide deletion in the HE gene RBD. Isogenic HE proteins containing either the insertion or deletion in the HE RBD maintained esterase activity and could bind bovine submaxillary mucin, a substrate enriched in the receptor 9-O-acetylated-sialic acid, despite modeling that predicted structural changes in the HE R3 loop critical for receptor binding. The emergence of BCoV with structural variants in the RBD raises the possibility of further interspecies transmission.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Humans , Cattle , Animals , Hemagglutinins/metabolism , N-Acetylneuraminic Acid/metabolism , Mutation , Glycoproteins/genetics , Esterases/genetics , Esterases/metabolism , Nucleotides/metabolism , Spike Glycoprotein, Coronavirus/genetics
3.
Wiener Tierarztliche Monatsschrift ; 109(Artikel 11), 2022.
Article in English | CAB Abstracts | ID: covidwho-2025202

ABSTRACT

We have evaluated the diagnostic performance of immunochromatographic point-of-care tests (POCT) for the detection of rotavirus, coronavirus, Escherichia (E.) coli F5, Cryptosporidium (C.) parvum, Clostridium (Cl.) perfringens and Giardia (G.) intestinalis in fresh and thawed faecal samples from calves aged up to six months with diarrhoea. We performed POCTs to detect rotavirus, coronavirus, E. coli F5, C. parvum, Cl. perfringens and G. intestinalis on fresh samples in a field study and re-evaluated the performance for C. parvum, Cl. perfringens and G. intestinalis using thawed samples. We calculated the performance based on the results of the reference methods, which were RT-qPCR for the detection of rota- and coronavirus and bacteriological culturing and PCR to detect E. coli F5 and Cl. perfringens a and ss2 toxins. C. parvum was detected by phase-contrast microscopy and G. intestinalis by immunofluorescence microscopy. We collected 177 faecal samples from diarrhoeic calves. We found good performance for the POCT targeting rotavirus (sensitivity (SE)=92.9%;specificity (SP)=95.6%) and C. parvum (SE=63.3%;SP=96.2%). For E. coli F5, the number of true positive samples (n=1) was too low to evaluate the performance. The POCT to detect coronavirus gave a poor performance (SE=3.3%;SP=96.6%) and the POCT to detect Cl. perfringens a moderate performance (SE=52.8%;SP=78.2%). G. intestinalis POCT showed a higher sensitivity to immunofluorescence microscopy in thawed than in fresh faecal samples (SE=43.9% versus SE=29.2%). There are substantial differences in diagnostic performance between the commercially available immunochromatographic POCTs. Still, POCT can make a valuable contribution to the diagnosis and prevention of calf diarrhoea.

4.
Wiener Tierarztliche Monatsschrift ; 109(Artikel 9), 2022.
Article in German | CAB Abstracts | ID: covidwho-2025201

ABSTRACT

Introduction: Neonatal calf diarrhoea is a multifactorial disease that sometimes leads to high economic losses. It can be fatal due to dehydration and acidosis and has been one of the main causes of calf mortality. Material and methods: This retrospective study considered calves of a maximum of 35 days of age and with a diagnosed infection with rotavirus and/or bovine coronavirus. We examined the clinical records of 156 calves that were referred to the University Clinic for Ruminants in Vienna. Results Calves that had been treated with antibiotics before admission to the Clinic had a higher risk of staying longer, suggesting either that these calves had a more serious illness or that antibiotic treatment was not indicated and so therapeutic success was not achieved. Twenty-three calves died or were euthanized at the Clinic. At the time of admission, they were younger than the surviving calves and they had a lower inner body temperature and a lower base excess at the first examination. The four most common pathogens in faecal samples were rotavirus, bovine coronavirus, Cryptosporidium parvum and Escherichia coli, which were detected in 67.1%, 53.9%, 48.1% and 94.1% of the faecal samples examined. The most common co-infection was rotavirus with Cryptosporidium parvum (17 faecal samples). We inspected the four most common pathogens in more detail. There were significant correlations between bovine coronavirus and season, with the risk of suffering from bovine coronavirus 1.6 times higher in winter than in other seasons. There was also a correlation between Cryptosporidium parvum and general behaviour: the risk of being infected with Cryptosporidium parvum was 2.6 times higher in calves that were moderately to severely depressed at the first examination. There was a correlation between co-infections and mortality, with calves with a co-infection at three times higher risk of dying than calves with a mono-infection.

5.
BMC Vet Res ; 18(1): 323, 2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-2002178

ABSTRACT

BACKGROUND: Neonatal calf diarrhea (NCD) is the leading cause of calf morbidity and mortality in beef cattle. Cow's vaccination in last stage of pregnancy is one of the most important measures to mitigate the risk of NCD outbreaks. The aim of this study was to evaluate the efficacy of prepartum single dose vaccination against NCD, especially Bovine Rotavirus type A (BoRVA) and Bovine Coronavirus (BCoV), in Nelore dams and offspring. A total of 117 pregnant cows (n = 81) and heifers (n = 36) were distributed in two groups, vaccinated (VAC: cows = 40; heifers = 19) and non-vaccinated (NVAC: cows = 41; heifers = 17). Vaccination occurred between 60 to 50 days before the expected calving date with a single dose of a water-in-oil (W/O) vaccine, and NVAC group received a dose of saline solution 0.9%. Blood samples were collected before vaccination and 30 days after to evaluate the antibody (Ab) response. Specific IgG1 Abs against BoRVA and BCoV were measured by using an Enzyme Linked Immuno Sorbent Assay (ELISA). Calves' births were monitored, and the transference of passive immunity was evaluated. Diarrhea was monitored in the first 30 days of age, and fecal samples were collected for identification of the etiological agent. RESULTS: Higher titers of IgG1 Ab against BoRVA and BCoV was observed in the VAC group than NVAC group in the cow (P < 0.0001) and total dams categories (P < 0.0001). The titer of specific IgG1 Abs in the calves' serum reflected the dams response, observing higher IgG1 Ab titers for BoRVA (P < 0.0016) and BCoV (P < 0.0095) in the offspring born to VAC cows and higher IgG1 Ab titers for BoRVA(P < 0.0171) and BCoV (P < 0.0200) in the offspring born to VAC total dams. The general incidence of diarrhea observed was 18.6% (11/59) and 29.3% (17/58) in the calves born to the VAC and NVAC group, respectively. CONCLUSIONS: Prepartum vaccination with a single dose of the vaccine tested increased the titers of IgG1 Ab against BCoV and BoRVA, and it could be used as a preventive strategy to decrease the NCD occurrence in Nelore calves.


Subject(s)
Cattle Diseases , Noncommunicable Diseases , Animals , Cattle , Diarrhea/prevention & control , Diarrhea/veterinary , Female , Immunoglobulin G , Pregnancy , Vaccination/veterinary
6.
Environ Res ; 214(Pt 4): 114057, 2022 11.
Article in English | MEDLINE | ID: covidwho-1996149

ABSTRACT

Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.


Subject(s)
COVID-19 , Water Purification , Anaerobiosis , Animals , COVID-19/epidemiology , Cattle , Humans , RNA , SARS-CoV-2/genetics , Sewage , Waste Water , Water Purification/methods
7.
Arch Microbiol ; 204(8): 536, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1976800

ABSTRACT

The present study aimed to explore if bovine coronavirus nucleocapsid (BCoV N) impacts IFN-ß production in the host cells and to reveal further molecular mechanism of BCoV pathogenesis. Human embryonic kidney (HEK) 293 T cells were transiently transfected with pMyc-BCoV-N recombinant plasmids, then infected with the vesicular stomatitis virus (VSV). Expression levels of beta interferon (IFN-ß) mRNA were detected using RT-qPCR. The results showed that BCoV N gene was 1347 bp that was consistent with the expected size. pMyc-BCoV-N recombinant protein was 1347 bp which was successfully transcribed and overexpressed in HEK 293 T cells. BCoV-N recombinant protein inhibited dose-dependently VSV-induced IFN-ß production (p < 0.01). MDA5, MAVS, TBK1 and IRF3 could promote transcription levels of IFN-ß mRNA. But, BCoV-N protein demoted IFN-ß transcription levels induced by MDA5, MAVS, TBK1 and IRF3. Furthermore, expression levels of MDA5, MAVS, TBK1 and IRF3 mRNAs were reduced in RIG-I-like receptor (RLR) pathway. In conclusion, BCoV-N reduced IFN-ß levels in RIG-I-like receptor (RLR) pathway in HEK 293 T cells which were induced by MDA5, MAVS, TBK1 and IRF3(5D). BCoV-N protein inhibited IFN-ß production and activation of RIG-I-like receptors (RLRs) signal pathway. Our findings demonstrated BCoV N protein is an IFN-ß antagonist through inhibition of MDA5, MAVS, TBK1 and IRF3(5D) in RLRs pathway, also revealed a new mechanism of BCoV N protein to evade host innate immune response by inhibiting type I IFN production, which is beneficial to developing novel prevention strategy for BCoV disease in the animals and humans.


Subject(s)
Coronavirus, Bovine , Animals , Cattle , Coronavirus, Bovine/genetics , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferon-beta/genetics , Nucleocapsid , RNA, Messenger , Recombinant Proteins
8.
Veterinary Times ; 50(24):6-6, 2020.
Article in English | CAB Abstracts | ID: covidwho-1970949
9.
Viruses ; 14(5)2022 05 21.
Article in English | MEDLINE | ID: covidwho-1964101

ABSTRACT

Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and researchers. However, there are few comprehensive epidemiological reviews, and key information regarding the effect of S-gene differences on tissue tendency and potential cross-species transmission remain unclear. In this review, we summarize BCoV epidemiology, including the transmission, infection-associated factors, co-infection, pathogenicity, genetic evolution, and potential cross-species transmission. Furthermore, the potential two-receptor binding motif system for BCoV entry and the association between BCoV and SARS-CoV-2 are also discussed in this review. Our aim is to provide valuable information for the prevention and treatment of BCoV infection throughout the world.


Subject(s)
COVID-19 , Cattle Diseases , Coronavirus, Bovine , Animals , COVID-19/veterinary , Cattle , Cattle Diseases/epidemiology , Coronavirus, Bovine/genetics , Evolution, Molecular , SARS-CoV-2/genetics
10.
Journal of the Hellenic Veterinary Medical Society ; 73(2):3951-3960, 2022.
Article in English | EMBASE | ID: covidwho-1957595

ABSTRACT

The purpose of the present study was to evaluate the efficacy of Enzyme-Linked Immunosorbent Assay (ELISA), immunochromatographic (ICG), and reverse transcription-polymerase chain reaction (RT-PCR) methods for the detection of rotavirus (RV) and bovine coronavirus (BCV). Faeces samples were collected from 90 diarrhoeic calves (male and female) up to one month of age and the immune response against RV and BCV infection was assessed by using AgELISA, ICG, and RT-PCR. To determine the performance and accuracy of each diagnostic method in comparison to the diagnostic gold standard (RT-PCR) method, different statistical tests including receiver operating characteristic curve (ROC) and concordance correlation were used. Results revealed the prevalence of RV and BCV and RV+BCV according to RT-PCR were equal to 8.89 (95% CI: 6.64-10.07), 14.44 (95% CI: 11.23-6.90), and 2.22 (95% CI: 0.89-3.72), respectively. The best agreement and the highest sensitivity and specificity were obtained between the RT-PCR and AgELISA (100% and 94.3%), and also the ICG test (95% and 94.3%) was less accurate method in comparison to ELISA method for identifying RV and BCV, but a good correlation and concordance between ICG diagnostic techniques and RT-PCR were observed. To put it in a nutshell, our results demonstrate that the AgELISA is the most accurate technique in comparison to RT-PCR, however the ICG assay can help improve the speed of diagnosis RV and BCV infections in dairy field. New scientific strategies for promoting accuracy and transparency of ICG-based technique in early diagnosis of the cause of calf diarrhoea should be used. Altogether, we suggest that positive ICG samples should be tested by AgELISA or RT-PCR techniques to avoid false results in farm animals.

11.
Harran Universitesi Veteriner Fakultesi Dergisi ; 11(1):120-127, 2022.
Article in Turkish | CAB Abstracts | ID: covidwho-1934962

ABSTRACT

Bovine coronavirus (BCoV) infections are widespread in newborn calf diarrhea, which is one of the critical problems in cattle breeding. This study aims to investigate BCoV infection in calves with diarrhea in Sanliurfa province. In this study, 94 calves with diarrhea (3 months) following clinical examination were sampled. Enzyme-linked immunosorbent assay (ELISA) was used to detect the presence of BCoV antigen. A total of 5 stool samples were found to be BCoV positive (5.32%). This result showed that BCoV was low in calves with diarrhea in Sanliurfa province. However, considering the rapid spread of the infection in cattle populations, it is thought that it may cause significant economic losses due to treatment costs and calf deaths.

12.
Acs Es&T Water ; : 10, 2022.
Article in English | Web of Science | ID: covidwho-1927046

ABSTRACT

The purpose of this study was to conduct a correlative assessment of SARS-CoV-2 RNA concentrations in wastewater with COVID-19 cases and a systematic evaluation of the effect of using different virus concentration methods and recovery and normalization approaches. We measured SARS-CoV-2 RNA concentrations at two different wastewater treatment plants (WWTPs) in the Bexar County of Texas from October 2020 to May 2021 (32 weeks) using reverse transcription droplet digital PCR (RT-ddPCR). We evaluated three different adsorption-extraction (AE) based virus concentration methods (acidification, addition of MgCl2, or without any pretreatment) using bovine coronavirus (BCoV) as surrogate virus and observed that the direct AE method showed the highest mean recovery. COVID-19 cases were correlated significantly with SARS-CoV-2 N1 concentrations in Salitrillo (rho = 0.75, p < 0.001) and Martinez II (rho = 0.68, p < 0.001) WWTPs, but normalizing to a spiked recovery control (BCoV) or a fecal marker (HF183) reduced correlations for both treatment plants. The results generated in this 32-week monitoring study will enable researchers to prioritize the virus recovery method and subsequent correlation studies for wastewater surveillance.

13.
Philippine Journal of Veterinary Medicine ; 57(1):27-40, 2021.
Article in English | CAB Abstracts | ID: covidwho-1905390

ABSTRACT

The study assessed the efficacy of a commercialized mixed herbal medicine in alleviating diarrhea in water buffalo (Bubalus bubalis) calves. The study involved 15 diarrheic water buffalo calves regardless of sex and with less than a year old from one farm divided into three treatments using randomized block design. Treatment 1 was served as control given with antibiotics and intestinal protectants.;Treatment 2 was mixed herbal medicine and probiotics and lastly, Treatment 3 was mixed herbal medicine only. The calves were treated three times a day for seven days for Treatments 2 and 3 while Treatment 1 (control) were treated once a day for 7 days. The animals were ob served and scoring of diarrhea were done and recorded daily for the next 7 days. Results of the study showed significant decrease in diarrhea scores on Day 6 and 7 post-treatment in Treatments 1 and 2 compared to the control. At Day 8 post-treatment, all calves showed soft to apparently normal stool. Genetic analysis of the possible causative agent of diarrhea revealed infection caused by rotavirus A, bovine coronavirus, BVDV, and ETEC. Results revealed that diarrhea caused by these pathogens can be alleviated by the herbal medicine and herbal medicine in addition of probiotics parallel to antibiotic treatment.

14.
Surveillance ; 48(4):10-24, 2021.
Article in English | CAB Abstracts | ID: covidwho-1887621

ABSTRACT

Exotic pest and disease investigations are managed and reported by the Ministry for Primary Industries' (MPI's) Diagnostic and Surveillance Directorate. This article presents a summary of investigations of suspect exotic and emerging pests and diseases in New Zealand during the period from July to September 2021.

15.
Biological Rhythm Research ; 53(3):351-357, 2022.
Article in English | EMBASE | ID: covidwho-1886303

ABSTRACT

An epidemiological study was conducted for investigation of bovine coronavirus by antigen Enzyme-linked immunosorbent assay kit in dairy calves from Central India (Madhya Pradesh and Chhattisgarh states) and North India (Uttar Pradesh state). Different epidemiological parameters like age, parity, colour and consistency of faecal materials and seasonal changes in a year were recorded. A total of 816 faecal samples were screened and out of which 7 (0.85%) animals were found to be positive for bovine coronavirus. The higher prevalence was recorded in north India followed by central India. Age wise higher prevalence was recorded below 2 month calves. Seasonally, the prevalence of coronavirus infection was higher in monsoon season and in first parity of calves as compared to other season and parity. Prevalence of coronavirus infection was higher in watery diarrhoea faecal materials than pasty yellow colour diarrhoea. The observations of the present study would provide the basis for further an effective explorative surveillance and epidemiological studies to know the real impact of coronavirus infection with associated risk factors in dairy calves of India.

16.
Journal of Mountain Agriculture on the Balkans ; 24(6):113-125, 2021.
Article in Bulgarian, English | CAB Abstracts | ID: covidwho-1871346

ABSTRACT

Coronavirus infections rank first in the pathology of the gastrointestinal tract and respiratory system in large and small ruminants. The paper analyzes the occurrence, spread, development, trends and prevention of coronavirus infections in ruminants in Bulgaria, Europe and around the world. Retrospective, descriptive and statistical methods were used. The experience and the specifics of the coronavirus diseases encountered so far in large and small ruminants - cattle, buffaloes, camels, deer, sheep and goats and their epizootic character are summarized.

17.
Viruses ; 14(6)2022 05 26.
Article in English | MEDLINE | ID: covidwho-1869815

ABSTRACT

In-vitro viral studies are still fundamental for biomedical research since studying the virus kinetics on cells is crucial for the determination of the biological properties of viruses and for screening the inhibitors of infections. Moreover, testing potential viral contaminants is often mandatory for safety evaluation. Nowadays, viral cytopathic effects are mainly evaluated through end-point assays requiring dye-staining combined with optical evaluation. Recently, optical-based automatized equipment has been marketed, aimed at the real-time screening of cell-layer status and obtaining further insights, which are unavailable with end-point assays. However, these technologies present two huge limitations, namely, high costs and the possibility to study only cytopathic viruses, whose effects lead to plaque formation and layer disruption. Here, we employed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (Pedot:Pss) organic electrochemical transistors (OECTs) for the real-time, electrical monitoring of the infection of cytolytic viruses, i.e., encephalomyocarditis virus (EMCV), and non-cytolytic viruses, i.e., bovine coronavirus (B-CoV), on cells. OECT data on EMCV were validated using a commercially-available optical-based technology, which, however, failed in the B-CoV titration analysis, as expected. The OECTs proved to be reliable, fast, and versatile devices for viral infection monitoring, which could be scaled up at low cost, reducing the operator workload and speeding up in-vitro assays in the biomedical research field.


Subject(s)
Biosensing Techniques , Cytopathogenic Effect, Viral
18.
Revista de Salud Animal ; 43(3), 2021.
Article in Spanish | CAB Abstracts | ID: covidwho-1863877

ABSTRACT

Winter dysentery (WD) is a highly contagious disease characterized by gastrointestinal disorders in cattle. Bovine coronavirus (BCoV) has been recognized as the etiological agent of this syndrome. In Cuba, it appeared for the first time in adult cattle in 2004, and later between January 2008 and February 2009. In 2020, diarrheal outbreaks with clinical and epidemiological characteristics similar to WD occurred in units from Mayabeque province. Of eight stool samples collected, the presence of BCoV was confirmed in seven of them by reverse transcription assays coupled to endpoint polymerase chain reaction (RT-PCR), which confirmed 87.5% positivity. Virus was isolated in cell cultures and its characteristic cytopathic effect was observed on the fifth day after inoculation. The results of the present study confirmed that BCoV is the causative agent of diarrheas in the bovine herds studied, and confirmed the epizootic mode of presentation of this disease in them.

19.
Antivir Chem Chemother ; 30: 20402066221103960, 2022.
Article in English | MEDLINE | ID: covidwho-1862063

ABSTRACT

BACKGROUND: Bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV). and bovine coronavirus (BCV) threaten the productivity of cattle worldwide. Development of therapeutics that can control the spread of these viruses is an unmet need. The present research was designed to explore the in vitro antiviral activity of the Nerium oleander derived cardiac glycoside oleandrin and a defined N. oleander plant extract (PBI-05204) containing oleandrin. METHODS: Madin Darby Bovine Kidney (MDBK) cells, Bovine Turbinate (BT) cells, and Human Rectal Tumor-18 (HRT-18) cells were used as in vitro culture systems for BVDV, BRSV and BCV, respectively. Cytotoxicity was established using serial dilutions of oleandrin or PBI-05204. Noncytotoxic concentrations of each drug were used either prior to or at 12 h and 24 h following virus exposure to corresponding viruses. Infectious virus titers were determined following each treatment. RESULTS: Both oleandrin as well as PBI-05204 demonstrated strong antiviral activity against BVDV, BRSV, and BCV, in a dose-dependent manner, when added prior to or following infection of host cells. Determination of viral loads by PCR demonstrated a concentration dependent decline in virus replication. Importantly, the relative ability of virus produced from treated cultures to infect new host cells was reduced by as much as 10,000-fold at noncytotoxic concentrations of oleandrin or PBI-05204. CONCLUSIONS: The research demonstrates the potency of oleandrin and PBI-05204 to inhibit infectivity of three important enveloped bovine viruses in vitro. These data showing non-toxic concentrations of oleandrin inhibiting infectivity of three bovine viruses support further investigation of in vivo antiviral efficacy.


Subject(s)
Diarrhea Viruses, Bovine Viral , Nerium , Respiratory Syncytial Virus, Bovine , Animals , Antiviral Agents/pharmacology , Cardenolides/pharmacology , Cardenolides/therapeutic use , Cattle , Heterocyclic Compounds, 4 or More Rings , Rhinovirus
20.
Viruses ; 14(5)2022 05 15.
Article in English | MEDLINE | ID: covidwho-1855824

ABSTRACT

Bovine coronaviruses (BCoVs), which cause gastrointestinal and respiratory diseases in cattle, and are genetically related to the human coronavirus HCoV-OC43, which is responsible for up to 10% of common colds, attract increased attention. We applied the method of photodynamic inactivation with cationic photosensitizers (PSs) to reduce the titers of BCoV and studied the morphological structure of viral particles under various modes of photodynamic exposure. The samples of virus containing liquid with an initial virus titer of 5 Log10 TCID50/mL were incubated with methylene blue (MB) or octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) at concentrations of 1-5 µM for 10 min in the dark at room temperature. After incubation, samples were irradiated with LED (emission with maximum at 663 nm for MB or at 686 nm for Zn-PcChol8+) with light doses of 1.5 or 4 J/cm2. Next, the irradiation titrated virus containing liquid was studied using negative staining transmission electron microscopy. MB and Zn-PcChol8+ at concentrations of 1-5 µM, in combination with red light from LED sources in the low doses of 1.5-4.0 J/cm2, led to a decrease in BCoV titers by at least four orders of magnitude from the initial titer 5 Log10 TCID50/mL. Morphological changes in photodamaged BCoVs with increasing PS concentrations were loss of spikes, change in shape, decreased size of virus particles, destruction of the envelope, and complete disintegration of viruses. BCoV has been found to be sensitive to MB, which is the well-known approved drug, even in the absence of light.


Subject(s)
Coronavirus OC43, Human , Coronavirus, Bovine , Animals , Cations , Cattle , Methylene Blue , Photosensitizing Agents/pharmacology , Virion
SELECTION OF CITATIONS
SEARCH DETAIL