Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2322331

ABSTRACT

This investigation presents results of Computational Fluid Dynamics (CFD) modelling of aerosol behaviour within an arbitrary 'realistic' 100m2 office environment, with dynamic and variable respiratory droplet release profile applied based on published findings (Morawska et al., 2009). A multitude of ventilation strategies and configurations have been applied to the base model to compare the effectiveness of reducing the concentration of suspended aerosols over time. A key finding of the investigation indicates a relatively low sensitivity to increasing outside air percentage, and that the benefit from this strategy is heavily dependent on the in-duct droplet decay factor. The application of local recirculating air filtration systems with MERV-13 filters mounted on occupant desks proved significantly more effectiveness than increasing outside air concentration from 25% to 100% in reducing the quantity of suspended aerosols. This highlights that the ventilation industry should perhaps focus on opportunities to integrate filtration systems into furniture, partitions, cabinetry etc., and that an appliance-based solution may be more beneficial for reducing COVID-19 transmission in buildings (and likely more straightforward) than modifications to central ventilation systems, particularly in the application of refurbishments and retrofits. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

2.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2327441

ABSTRACT

This study investigated upper-room germicidal ultraviolet (UR-GUV) light application in a music rehearsal room with a high ceiling (7.5 m). The focus was on the influences of the elevation and height of UV zone on disinfection of airborne viruses. This study assumed a uniform UV fluence rate of 0.2 W/m2 in the UV irradiation zone. According to the Computational Fluid Dynamics (CFD) results, average viral concentrations (Ca), fraction remaining (FR), and equivalent air exchange rate (λe) attributed to GUV, have power relationships with UV zone height. Ca and FR decreased with UV zone height, while λe did the opposite. UV zone elevation showed little influence on UR-GUV performance, indicating well-mixed air in the rehearsal room. High ceiling makes it possible to achieve adequate UV dose by increasing both UV zone height and UV light intensity. Using open fixtures improved energy efficiency and reduced operational costs of the UR-GUV system. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

3.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2326311

ABSTRACT

The current COVID-19 pandemic has highlighted the importance of health safety assessment in various indoor scenarios. Computational fluid dynamics (CFD) combined with a modified Wells-Riley equation provides a powerful tool to analyse local infection probability in an indoor space. Compared to a single infection probability characterising the space in the traditional Wells-Riley model, the coupled approach provides a distribution of infection probability within the space. Furthermore, this approach avoids assuming a well-mixed state, usually related to Wells-Riley equation. This study compares displacement and mixing ventilation strategies with four different ventilation rates to assess the local quanta concentrations modelled using passive scalar transport approach. The simulation results are processed to also account for the effect of wearing masks and vaccinations. The result show that a well-designed displacement ventilation system can significantly reduce infection probability compared to mixing ventilation system at similar airflow rate. Additionally, the results emphasised the importance of wearing mask and getting vaccinated as a means of reducing infection probability. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

4.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2325446

ABSTRACT

This study investigates the effectiveness of an upper-room UVGI system in a small classroom. Mixing ventilation can increase virus removal when combined with a UVGI system more effectively than displacement ventilation combined with a UVGI system, especially in cases where the ventilation rate is low. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

5.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2325131

ABSTRACT

It has been suggested that COVID-19 causes airborne infection by fine particles called droplet nuclei and reducing the risk of indoor infection by ventilation is attracting attention as an infection control measure. However, the characteristics of fine particles are not considered in indoor ventilation plans, and the behavior and removal effect of particles by ventilation have not been sufficiently clarified. Therefore, in this study, numerical analysis using a single aperture model is performed under various conditions to evaluate how indoor concentration trends and ventilation rates are affected by these factors in order to properly evaluate the outflow characteristics of chemical species and particulate matter due to ventilation. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

6.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2324682

ABSTRACT

Risk assessment models typically assume ideal mixing, in which the pathogen-laden aerosol particles emitted by a person are evenly distributed in the room. This study points out the local deviation from this idealized assumption and a correlation between the level of pathogen concentration and the distance from the emitter. For this purpose, several numerical studies (CFD) were analyzed, and a validation experiment was performed. Statistical evaluation of the spatial pathogen distribution was used to determine the potential exposure to elevated pathogen concentrations. Compared to an ideally mixed room, at a distance of 1.5 m, the mixing ventilation cases show a 25% risk of being exposed to twice the amount of pathogens and a 5% risk to more than 5 times the assumed value. For displacement ventilation there is a 75% chance of being exposed to less pathogens than in complete mixing at a distance of 1 m. The measurement values agree with the simulation results. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

7.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2323383

ABSTRACT

In this paper a numerical methodology for close proximity exposure (<2m) is applied to the analysis of aerosol airborne dispersion and SARS-CoV-2 potential infection risk during short journeys in passenger cars. It consists of a three-dimensional transient Eulerian-Lagrangian numerical model coupled with a recently proposed SARS-CoV-2 emission approach, using the open-source software OpenFOAM. The numerical tool, validated by Particle Image Velocimetry (PIV), is applied to the simulation of aerosol droplets emitted by a contagious subject in a car cabin during a 30-minute journey and to the integrated risk assessment for SARS-CoV-2 for the other passengers. The effects of different geometrical and thermo-fluid-dynamic influence parameters are investigated, showing that both the position of the infected subject and the ventilation system design affect the amount of virus inhaled and the highest-risk position inside the passenger compartment. Calculated infection risk, for susceptible passengers in the car, can reach values up to 59%. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

8.
Environ Sci Pollut Res Int ; 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2326412

ABSTRACT

Over 766 million people have been infected by coronavirus disease 2019 (COVID-19) in the past 3 years, resulting in 7 million deaths. The virus is primarily transmitted through droplets or aerosols produced by coughing, sneezing, and talking. A full-scale isolation ward in Wuhan Pulmonary Hospital is modeled in this work, and water droplet diffusion is simulated using computational fluid dynamics (CFD). In an isolation ward, a local exhaust ventilation system is intended to avoid cross-infection. The existence of a local exhaust system increases turbulent movement, leading to a complete breakup of the droplet cluster and improved droplet dispersion inside the ward. When the outlet negative pressure is 4.5 Pa, the number of moving droplets in the ward decreases by approximately 30% compared to the original ward. The local exhaust system could minimize the number of droplets evaporated in the ward; however, the formation of aerosols cannot be avoided. Furthermore, 60.83%, 62.04%, 61.03%, 60.22%, 62.97%, and 61.52% of droplets produced through coughing reached patients in six different scenarios. However, the local exhaust ventilation system has no apparent influence on the control of surface contamination. In this study, several suggestions with regards to the optimization of ventilation in wards and scientific evidence are provided to ensure the air quality of hospital isolation wards.

10.
11.
Journal of Building Performance Simulation ; : 1-20, 2023.
Article in English | Web of Science | ID: covidwho-2311713
12.
Canadian Journal of Chemical Engineering ; 2023.
Article in English | Web of Science | ID: covidwho-2308204
13.
Iaq 2020: Indoor Environmental Quality Performance Approaches, Pt 2 ; 2022.
Article in English | Web of Science | ID: covidwho-2308179
14.
Environ Sci Pollut Res Int ; 30(12): 33206-33228, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2289596

ABSTRACT

This paper presents the numerical results of particle propagation in open space, taking into account the temperature of the human body and the surface of the ground. And also, the settling of particles or droplets under the action of gravitational force and transport in the open air is taken into account, taking into account the temperature during the process of breathing and sneezing or coughing. The temperature of the body and the surface of the ground, different rates of particle emission from the mouth, such as breathing and coughing or sneezing, are numerically investigated. The effect of temperature, cross-inlet wind, and the velocity of particle ejection from a person's mouth on social distancing is being investigated using a numerical calculation. The variable temperature of the human body forms a thermal plume, which affects the increase in the trajectory of the particle propagation, taking into account the lateral air flow. The thermal plume affects the particles in the breathing zone and spreads the particles over long distances in the direction of the airflow. The result of this work shows that in open space, taking into account the temperature of the body and the surface of the ground, a 2-m social distance may be insufficient for the process of sneezing and social distance must be observed depending on the breathing mode.


Subject(s)
Human Body , Wind , Humans , Temperature , Particle Size , Physical Distancing , Respiratory Aerosols and Droplets , Sneezing
15.
Simulation ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2301673
16.
Process Saf Environ Prot ; 174: 548-560, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2306460

ABSTRACT

Aerosols such as PM2.5 and PM10 can have an immense impact on human health. With the outbreak of SARS-CoV-2, it is urgent to filter aerosols by media filtration technology. Electrospun nanofibers are a promising material for achieving high efficiency, low resistance, light weight, and environmentally friendly air filtration. But research on filtration theory and computer simulation of nanofiber media is still lacking. The traditional method involving computational fluid dynamics (CFD) and Maxwell's first-order slip boundary overestimates the slip velocity on the fiber surface. In this study, a new modified slip boundary was proposed, which introduced a slip velocity coefficient on the basis of the no-slip boundary to address the slip wall. Our simulation results were compared with the experimental pressure drop and particle capture efficiency of real polyacrylonitrile (PAN) nanofiber media. The computational accuracy on pressure drop of the modified slip boundary improved 24.6% and 11.2% compared with that of the no-slip boundary and Maxwell's first-order slip boundary, respectively. It was found that the particle capture efficiency near the most-penetrating particle size (MPPS) was significantly increased when slip effect occurred. This may be explained by the slip velocity on the fiber surface, which would make particles more accessible to the fiber surface and captured by interception.

17.
Comput Part Mech ; : 1-14, 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2301302

ABSTRACT

Respiratory infections such as COVID-19 can be spread by respiratory droplets with a diameter larger than 5-10 µ m or by droplet nuclei with a diameter smaller than 5 µ m . Besides wearing masks, fresh air should be supplied frequently in closed rooms to avoid infections. Constructing and operating new isolation rooms require time, money, and maintenance cost, which are scarce in the current pandemic and in many communities. Displacement ventilation may be a feasible and secure option in temporary hospitals and other buildings to control the disease. This paper investigates using CFD simulations how displacement ventilation systems can deliver high air quality, and thermal comfort and minimize the risk of COVID-19 infection in enclosed spaces.

18.
ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 ; 6, 2022.
Article in English | Scopus | ID: covidwho-2266889
20.
Experimental and Computational Multiphase Flow ; 2023.
Article in English | Scopus | ID: covidwho-2257033
SELECTION OF CITATIONS
SEARCH DETAIL