ABSTRACT
The outbreak of coronavirus disease 2019 (COVID-19) occurred at the end of 2019, and it has continued to be a source of misery for millions of people and companies well into 2020. There is a surge of concern among all persons, especially those who wish to resume in-person activities, as the globe recovers from the epidemic and intends to return to a level of normalcy. Wearing a face mask greatly decreases the likelihood of viral transmission and gives a sense of security, according to studies. However, manually tracking the execution of this regulation is not possible. The key to this is technology. We present a deep learning-based system that can detect instances of improper use of face masks. A dual-stage convolutional neural network architecture is used in our system to recognize masked and unmasked faces. This will aid in the tracking of safety breaches, the promotion of face mask use, and the maintenance of a safe working environment. In this paper, we propose a variant of a multi-face detection model which has the potential to target and identify a group of people whether they are wearing masks or not.
ABSTRACT
This paper proposes a time-series stochastic socioeconomic model for analyzing the impact of the pandemic on the regulated distribution electricity market. The proposed methodology combines the optimized tariff model (socioeconomic market model) and the random walk concept (risk assessment technique) to ensure robustness/accuracy. The model enables both a past and future analysis of the impact of the pandemic, which is essential to prepare regulatory agencies beforehand and allow enough time for the development of efficient public policies. By applying it to six Brazilian concession areas, results demonstrate that consumers have been/will be heavily affected in general, mainly due to the high electricity tariffs that took place with the pandemic, overcoming the natural trend of the market. In contrast, the model demonstrates that the pandemic did not/will not significantly harm power distribution companies in general, mainly due to the loan granted by the regulator agency, named COVID-account. Socioeconomic welfare losses averaging 500 (MR$/month) are estimated for the equivalent concession area, i.e., the sum of the six analyzed concession areas. Furthermore, this paper proposes a stochastic optimization problem to mitigate the impact of the pandemic on the electricity market over time, considering the interests of consumers, power distribution companies, and the government. Results demonstrate that it is successful as the tariffs provided by the algorithm compensate for the reduction in demand while increasing the socioeconomic welfare of the market.
ABSTRACT
Vaccination offers health, economic, and social benefits. However, three major issues-vaccine quality, demand forecasting, and trust among stakeholders-persist in the vaccine supply chain (VSC), leading to inefficiencies. The COVID-19 pandemic has exacerbated weaknesses in the VSC, while presenting opportunities to apply digital technologies to manage it. For the first time, this study establishes an intelligent VSC management system that provides decision support for VSC management during the COVID-19 pandemic. The system combines blockchain, internet of things (IoT), and machine learning that effectively address the three issues in the VSC. The transparency of blockchain ensures trust among stakeholders. The real-time monitoring of vaccine status by the IoT ensures vaccine quality. Machine learning predicts vaccine demand and conducts sentiment analysis on vaccine reviews to help companies improve vaccine quality. The present study also reveals the implications for the management of supply chains, businesses, and government.
ABSTRACT
Objectives: When diagnosing Coronavirus disease 2019(COVID-19), radiologists cannot make an accurate judgments because the image characteristics of COVID-19 and other pneumonia are similar. As machine learning advances, artificial intelligence(AI) models show promise in diagnosing COVID-19 and other pneumonias. We performed a systematic review and meta-analysis to assess the diagnostic accuracy and methodological quality of the models. Methods: We searched PubMed, Cochrane Library, Web of Science, and Embase, preprints from medRxiv and bioRxiv to locate studies published before December 2021, with no language restrictions. And a quality assessment (QUADAS-2), Radiomics Quality Score (RQS) tools and CLAIM checklist were used to assess the quality of each study. We used random-effects models to calculate pooled sensitivity and specificity, I2 values to assess heterogeneity, and Deeks' test to assess publication bias. Results: We screened 32 studies from the 2001 retrieved articles for inclusion in the meta-analysis. We included 6737 participants in the test or validation group. The meta-analysis revealed that AI models based on chest imaging distinguishes COVID-19 from other pneumonias: pooled area under the curve (AUC) 0.96 (95 % CI, 0.94-0.98), sensitivity 0.92 (95 % CI, 0.88-0.94), pooled specificity 0.91 (95 % CI, 0.87-0.93). The average RQS score of 13 studies using radiomics was 7.8, accounting for 22 % of the total score. The 19 studies using deep learning methods had an average CLAIM score of 20, slightly less than half (48.24 %) the ideal score of 42.00. Conclusions: The AI model for chest imaging could well diagnose COVID-19 and other pneumonias. However, it has not been implemented as a clinical decision-making tool. Future researchers should pay more attention to the quality of research methodology and further improve the generalizability of the developed predictive models.
ABSTRACT
Viral infections represent a major health concern worldwide. The alarming rate at which SARS-CoV-2 spreads, for example, led to a worldwide pandemic. Viruses incorporate genetic material into the host genome to hijack host cell functions such as the cell cycle and apoptosis. In these viral processes, protein-protein interactions (PPIs) play critical roles. Therefore, the identification of PPIs between humans and viruses is crucial for understanding the infection mechanism and host immune responses to viral infections and for discovering effective drugs. Experimental methods including mass spectrometry-based proteomics and yeast two-hybrid assays are widely used to identify human-virus PPIs, but these experimental methods are time-consuming, expensive, and laborious. To overcome this problem, we developed a novel computational predictor, named cross-attention PHV, by implementing two key technologies of the cross-attention mechanism and a one-dimensional convolutional neural network (1D-CNN). The cross-attention mechanisms were very effective in enhancing prediction and generalization abilities. Application of 1D-CNN to the word2vec-generated feature matrices reduced computational costs, thus extending the allowable length of protein sequences to 9000 amino acid residues. Cross-attention PHV outperformed existing state-of-the-art models using a benchmark dataset and accurately predicted PPIs for unknown viruses. Cross-attention PHV also predicted human-SARS-CoV-2 PPIs with area under the curve values >0.95. The Cross-attention PHV web server and source codes are freely available at https://kurata35.bio.kyutech.ac.jp/Cross-attention_PHV/ and https://github.com/kuratahiroyuki/Cross-Attention_PHV, respectively.
ABSTRACT
The deadly coronavirus has not just devastated the lives of millions but has put the entire healthcare system under tremendous pressure. Early diagnosis of COVID-19 plays a significant role in isolating the positive cases and preventing the further spread of the disease. The medical images along with deep learning models provided faster and more accurate results in the detection of COVID-19. This article extensively reviews the recent deep learning techniques for COVID-19 diagnosis. The research articles discussed reveal that Convolutional Neural Network (CNN) is the most popular deep learning algorithm in detecting COVID-19 from medical images. An overview of the necessity of pre-processing the medical images, transfer learning and data augmentation techniques to deal with data scarcity problems, use of pre-trained models to save time and the role of medical images in the automatic detection of COVID-19 are summarized. This article also provides a sensible outlook for the young researchers to develop highly effective CNN models coupled with medical images in the early detection of the disease.
ABSTRACT
Alongside the currently used nasal swab testing, the COVID-19 pandemic situation would gain noticeable advantages from low-cost tests that are available at any-time, anywhere, at a large-scale, and with real time answers. A novel approach for COVID-19 assessment is adopted here, discriminating negative subjects versus positive or recovered subjects. The scope is to identify potential discriminating features, highlight mid and short-term effects of COVID on the voice and compare two custom algorithms. A pool of 310 subjects took part in the study; recordings were collected in a low-noise, controlled setting employing three different vocal tasks. Binary classifications followed, using two different custom algorithms. The first was based on the coupling of boosting and bagging, with an AdaBoost classifier using Random Forest learners. A feature selection process was employed for the training, identifying a subset of features acting as clinically relevant biomarkers. The other approach was centered on two custom CNN architectures applied to mel-Spectrograms, with a custom knowledge-based data augmentation. Performances, evaluated on an independent test set, were comparable: Adaboost and CNN differentiated COVID-19 positive from negative with accuracies of 100% and 95% respectively, and recovered from negative individuals with accuracies of 86.1% and 75% respectively. This study highlights the possibility to identify COVID-19 positive subjects, foreseeing a tool for on-site screening, while also considering recovered subjects and the effects of COVID-19 on the voice. The two proposed novel architectures allow for the identification of biomarkers and demonstrate the ongoing relevance of traditional ML versus deep learning in speech analysis.
ABSTRACT
The coronavirus pandemic has affected people all over the world and posed a great challenge to international health systems. To aid early detection of coronavirus disease-2019 (COVID-19), this study proposes a real-time detection system based on the Internet of Things framework. The system collects real-time data from users to determine potential coronavirus cases, analyses treatment responses for people who have been treated, and accurately collects and analyses the datasets. Artificial intelligence-based algorithms are an alternative decision-making solution to extract valuable information from clinical data. This study develops a deep learning optimisation system that can work with imbalanced datasets to improve the classification of patients. A synthetic minority oversampling technique is applied to solve the problem of imbalance, and a recursive feature elimination algorithm is used to determine the most effective features. After data balance and extraction of features, the data are split into training and testing sets for validating all models. The experimental predictive results indicate good stability and compatibility of the models with the data, providing maximum accuracy of 98% and precision of 97%. Finally, the developed models are demonstrated to handle data bias and achieve high classification accuracy for patients with COVID-19. The findings of this study may be useful for healthcare organisations to properly prioritise assets.
ABSTRACT
Chest X-ray (CXR) imaging is a low-cost, easy-to-use imaging alternative that can be used to diagnose/screen pulmonary abnormalities due to infectious diseaseX: Covid-19, Pneumonia and Tuberculosis (TB). Not limited to binary decisions (with respect to healthy cases) that are reported in the state-of-the-art literature, we also consider non-healthy CXR screening using a lightweight deep neural network (DNN) with a reduced number of epochs and parameters. On three diverse publicly accessible and fully categorized datasets, for non-healthy versus healthy CXR screening, the proposed DNN produced the following accuracies: 99.87% on Covid-19 versus healthy, 99.55% on Pneumonia versus healthy, and 99.76% on TB versus healthy datasets. On the other hand, when considering non-healthy CXR screening, we received the following accuracies: 98.89% on Covid-19 versus Pneumonia, 98.99% on Covid-19 versus TB, and 100% on Pneumonia versus TB. To further precisely analyze how well the proposed DNN worked, we considered well-known DNNs such as ResNet50, ResNet152V2, MobileNetV2, and InceptionV3. Our results are comparable with the current state-of-the-art, and as the proposed CNN is light, it could potentially be used for mass screening in resource-constraint regions.
ABSTRACT
BACKGROUND: Since the onset of the COVID-19 pandemic, the world witnessed disruption on an unprecedented scale affecting our daily lives including but not limited to healthcare, business, education, and transportation. Deep Learning (DL) is a branch of Artificial intelligence (AI) applications, the recent growth of DL includes features that could be helpful in fighting the COVID-19 pandemic. Utilizing such features could support public health efforts. OBJECTIVE: Investigate the literature available in the use of DL technology to support dealing with the COVID-19 crisis. We summarize the literature that uses DL features to analyze datasets for the purpose of a quick COVID-19 detection. METHODS: This review follows PRISMA Extension for Scoping Reviews (PRISMA-ScR). We have scanned the most two commonly used databases (IEEE, ACM). Search terms were identified based on the target intervention (DL) and the target population (COVID-19). Two authors independently handled study selection and one author assigned for data extraction. A narrative approach is used to synthesize the extracted data. RESULTS: We retrieved 53 studies and after passing through PRISMA excluding criteria, only 17 studies are considered in this review. All studies used deep learning for detection of COVID-19 cases in early stage based on different diagnostic modalities. Convolutional Neural Network (CNN) and Transfer Learning (TL) were the most commonly used techniques. CONCLUSION: The included studies showed that DL techniques has significant impact on early detection of COVID-19 with high accuracy rate. However, most of the proposed methods are still in development and not tested in a clinical setting. Further investigation and collaboration are required from the research community and healthcare professionals in order to develop and standardize guidelines for use of DL in the healthcare domain.