Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Prev Vet Med ; 209: 105792, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2086629

ABSTRACT

Canine enteric coronavirus (CCoV) is a pathogenic virus that infects dogs worldwide, causing enteric issues and causing harm to the dog industry and dogs. Although CCoV is not recognized as a highly lethal canine intestinal pathogen, it has been reported that CCoV is significantly associated with canine diarrhea in dogs. CCoV is a common health problem in dogs, attracting major concern from veterinarians and dog owners across China. In this study, we summarized the prevalence and epidemiological characteristics of CCoV in dogs in mainland China. The study revealed that the pooled prevalence of CCoV infection was 33%, and which associated with age, but not with sex, season and immunization status. In addition, the study also further suggested that CCoV-II was the predominant CCoV subtype in Chinese dogs. This study will provide valuable information for CCoV infections across China and other countries. Furthermore, this study also suggested that continuous surveillance and epidemiological studies of CCoV are necessary.

2.
Companion ; : 17-19, 2021.
Article in English | CAB Abstracts | ID: covidwho-2046845
3.
Vet Res Commun ; 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2041311

ABSTRACT

Canine coronavirus (CCoV), canine parvovirus (CPV), and canine distemper virus (CDV) are highly contagious canine pathogens; dogs with these diseases are difficult to treat. In a previous study, we developed a recombinant adenovirus expressing canine interferon lambda 3 (Ad-caIFNλ3) in canine epithelial cells. In this study, we aimed to investigate the antiviral activity of Ad-caIFNλ3 against CCoV, CPV, and CDV in two canine cell lines, A72 and MDCK. Ad-caIFNλ3 transduction suppressed replication of these viruses without cytotoxicity. Our results suggest that Ad-caIFNλ3 may be a therapeutic candidate for canine viral diseases.

4.
Pharmacognosy Journal ; 14(3):591-597, 2022.
Article in English | EMBASE | ID: covidwho-1957551

ABSTRACT

Currently, Canine coronavirus (CCoV) is an enteric pathogen of the Alphacoronavirus-1 species that causes mild to severe diarrhea in puppies. The pathogenesis of this infection will cause severe lymphopenia and lead to death in puppies. This study aimed to determine the administration of probiotics on TNF-α expression, histological findings of the liver and lung in mice infected with CCoV. A total of 28 mice were randomly assigned into seven treatment groups, i.e. (C-) placebo;(C+) active CCoV vaccine induction;(T1) CCov + Isopronosin;(T2) CCoV + Lactobacillus acidophilus probiotic;(T3) CCoV + Lactobacillus Acidophylus and Bifidobacterium probiotics;(T4) CCoV + colustrum fermentation probiotic;(T5) CCoV + ginger, turmeric and ginger probiotics. Thereafter, the expression of TNF-α in the duodenum was stained using immunohistochemistry, liver and lung were stained using hematoxylin eosin. The data were analyzed using the ANOVA test followed by the Tukey test with a significance level (p<0.05). TNF-α expression on T4 and T5 decreased significantly (p<0.05) compared to C+, T1, T2 and T3. Histologic findings of the liver in the C- and T4 groups showed normal features in the central vein. On the other hand, glycogen accumulation was found in hepatocyte cells, hemorrhage with sinusoid dilation, lymphocyte infiltration in centro lobular area in group C+. Lung histology showed normal features of sinusoids and alveolar septa in groups C- and T4. Meanwhile, intra-alveolar hemorrhage was found with neutrophil cell infiltration and fibrin plasma accumulation in group C+. In conclusion, colostrum fermentation probiotics can reduce TNF-α expression in the duodenum and improve the liver and lung physiology in mice infected with CCoV.

5.
Veteriner Hekimler Dernegi Dergisi / Journal of the Turkish Veterinary Medical Society ; 93(2):124-132, 2022.
Article in Turkish | CAB Abstracts | ID: covidwho-1924975

ABSTRACT

Coronaviruses in the family Coronaviridae cause digestive and respiratory system infections in humans and animals. There are two subtypes of canine coronaviruses (CCoV), which are included in the alfacoronavirus, as CCoV I and CCoV II. CCoV-II is divided into two genotypes, CCoV-IIa and IIb. Although CCoV affects dogs of all ages and all diets, newborn puppies can be particularly susceptible and severely affected. According to the literature research, no molecular studies have been found in our country for the detection of canine coronavirus, especially in lower respiratory tract infections. In this study, it was aimed to detect and molecular characterization of CCoV un shelter dogs with lower respiratory tract infection. For this purpose, Bronchoalveolar Lavage (BAL) fluids taken from 40 shelter dogs with lower respiratory tract infections were examined. CCoV was detected in 3 of the BAL fluids of 40 dogs tested. A phylogenetic tree was constructed with the sequences obtained after the sequence analysis. It was determined that 2 of the 3 positive samples in the phylogenetic tree were CCoV-I and one sample was CCoV-II. In conclusion, this study revealed that CCoV-I and CCoV-II may play a role in lower respiratory system disorders of shelter dogs. In addition, the detection of two different CCoVs in different animals in the same shelter has been considered as an important data, and the detection of both types in dogs housed in crowded environments such as shelter conditions shows that the possibility of new variants or subtypes that may occur in the future should not be ignored.

6.
NAVC Clinician's Brief ; 29, 2022.
Article in English | CAB Abstracts | ID: covidwho-1898327
7.
Viruses ; 14(5)2022 04 21.
Article in English | MEDLINE | ID: covidwho-1822442

ABSTRACT

A canine coronavirus (CCoV) has now been reported from two independent human samples from Malaysia (respiratory, collected in 2017-2018; CCoV-HuPn-2018) and Haiti (urine, collected in 2017); these two viruses were nearly genetically identical. In an effort to identify any novel adaptations associated with this apparent shift in tropism we carried out detailed evolutionary analyses of the spike gene of this virus in the context of related Alphacoronavirus 1 species. The spike 0-domain retains homology to CCoV2b (enteric infections) and Transmissible Gastroenteritis Virus (TGEV; enteric and respiratory). This domain is subject to relaxed selection pressure and an increased rate of molecular evolution. It contains unique amino acid substitutions, including within a region important for sialic acid binding and pathogenesis in TGEV. Overall, the spike gene is extensively recombinant, with a feline coronavirus type II strain serving a prominent role in the recombinant history of the virus. Molecular divergence time for a segment of the gene where temporal signal could be determined, was estimated at around 60 years ago. We hypothesize that the virus had an enteric origin, but that it may be losing that particular tropism, possibly because of mutations in the sialic acid binding region of the spike 0-domain.


Subject(s)
Coronavirus, Canine , Animals , Cats , Dogs , N-Acetylneuraminic Acid , Spike Glycoprotein, Coronavirus/genetics , Tropism , Zoonoses
8.
Acta Scientiae Veterinariae ; 50, 2022.
Article in English | EMBASE | ID: covidwho-1818984

ABSTRACT

Background: Diarrhea induced by infectious factors may lead to significant health problems in dogs. Canine parvovirus (CPV), canine coronavirus (CCV), canine distemper virus (CDV), Giardia spp., Escherichia coli (E. coli), and Salmonella spp. are the important infectious agents that may induce diarrhea in dogs. The present study aimed to investigate the effect of CPV, CCV, CDV, Giardia spp., E. coli, and Salmonella spp. infections on the change in serum calprotectin (Calp) concentration. Materials, Methods & Results: A total of 30 dogs were enrolled in the study. The study dogs were divided into 3 groups. Healthy animals as confirmed by clinical examination and animals negative for the specified pathogens were placed in Group 1. Animals infected by one or more agents, including CPV, CCV, CDV, and Giardia spp., but negative for E. coli or Salmonella spp. were placed in Group 2. Finally, animals positive for E. coli or Salmonella spp. and infected or not infected by one or more agents, including CPV, CCV, CDV, and Giardia spp., were placed in Group 3. Stool samples and rectal and conjunctival swab samples were collected to investigate the etiologic agents that induced diarrhea. Blood samples were collected through vena cephalica antebrachii for hematological and biochemical examinations. The samples were obtained via routine clinical examinations at the Prof. Dr. Servet Sekin outpatient clinic at Dicle University Veterinary Faculty. CPV, CCV, CDV, and Giardia spp. diagnoses were made based on immunochromatographic test kits. The bacteriological analysis of stool samples was used to diagnose E. coli and Salmonella spp. infection. Serum Calp concentrations were measured by Enzyme-Linked Immunosorbent Assay (ELISA). The analysis of swab and stool samples by immunochromatographic rapid diagnosis kits and microbiological methods showed that 5 animals were infected with CPV, 10 with CCV, 6 with CDV, 3 with Giardia spp., 12 with E. coli, and 2 with none of the specified agents. Total leukocyte count (WBC), lymphocyte (Lym - %), and granulocyte (Gra - %) values were higher in the diarrheal dogs when compared with the control group. In the biochemical examination of serum samples, total bilirubin (TBIL) and phosphorus (P) levels were higher and sodium (Na) levels were lower in Group 3 when compared to the control group (P = 0.025, 0.024, and 0.018, respectively). Total protein (TP) and albumin (Alb) values were lower in Group 2 compared to Groups 1 and 3 [P = 0.001 and 0.019 for TP, P = 0.000 and 0.01 for Alb, respectively]. There was a statistically significant difference in creatine kinase (CK) levels between Group 1 and Group 2 (P = 0.013). Serum Calp level was higher in the E. coli infected group (Group 3) compared to the other groups, no significant differences were noted between the groups (P > 0.05). Discussion: In conclusion, to the best of authors knowledge, this study is the first to evaluate serum Calp levels in dogs with diarrhea induced by viral, bacterial, and protozoan infections. The Calp level was higher in the sick dogs that were infected by at least one agent, including CPV, CCV, CDV, and Giardia spp., and were at the same time E. coli positive when compared with the control group and the group without E. coli infections. It was concluded that new studies could be useful to reveal the diagnostic importance of serum Calp concentration in dogs with diarrhea and that these results may contribute to future studies in this area.

9.
Microb Pathog ; 166: 105548, 2022 May.
Article in English | MEDLINE | ID: covidwho-1799780

ABSTRACT

Canine coronavirus (CCoV) is generally thought of as a mild, but highly contagious, enteritis of young dogs. This study was to investigate the molecular detection and characteristics of CCoV in Chengdu city, Southwest China. 218 canine fecal samples were collected from four animal hospitals and one animal shelter from 2020 to 2021. Fifty-nine CCoV-positive samples were detected by RT-PCR, including 40 CCoV-I, 25 CCoV-IIa, one CCoV-IIb and 10 untyped. To further analyze the genetic diversity of CCoV, we amplified ten complete spike (S) genes, including four CCoV-I and six CCoV-II strains. The amino acid sequence obtained in this study revealed 85.95% ± 12.55% homology with the reference strains. Moreover, in the N-terminal structural domain, there were two amino acid insertions (17QQ18) in two strains of CCoV-I and four amino acid insertions (95IGTN98) in CCoV-IIb strain. Interestingly, we identified that the S1/S2 cleavage site of the S protein of CCoV strains (SWU-SSX3 and SWU-SSX10) were consistent with feline coronavirus (FCoV). In the evolutionary tree, a strain of CCoV-I (SWU-SSX10) was found to be more closely related to FCoV, while SWU-SSX7 of CCoV-IIb was more closely related to coronavirus from the Chinese ferret badger. In addition, for the first time, recombination in a CCoV-IIb strain was found to occur between two subtypes occurring in the C domain of the S1 subunit, with a breakpoint starting at 2141 nt. The results enriched the epidemiological information of CCoV and provided an important reference for the prevention of CCoV in Chengdu city, Southwest China.


Subject(s)
Coronavirus, Canine , Dog Diseases , Amino Acids/genetics , Animals , Coronavirus, Canine/classification , Coronavirus, Canine/genetics , Dog Diseases/epidemiology , Dog Diseases/virology , Dogs , Phylogeny
10.
Springer Protocol. Handb. ; : 3-19, 2022.
Article in English | EMBASE | ID: covidwho-1718502

ABSTRACT

Coronaviruses (CoVs) infect diverse animal species and cause respiratory, enteric, hepatic, renal, neurologic, and even systemic diseases. The majority of CoVs have a narrow host specificity, but a few CoVs have a broad range of host specificity. This chapter provides a brief review of animal CoVs, including SARS-CoV-2 of animals for their receptors, host tropism, and pathogenesis in target animals.

11.
Res Vet Sci ; 144: 190-195, 2022 May.
Article in English | MEDLINE | ID: covidwho-1521511

ABSTRACT

Severe clinical diseases associated to αCoronavirus (αCoV) infections were recently demonstrated for the first time in humans and a closely related but distinct canine CoV (CCoV) variant was identified in the nasopharyngeal swabs of children with pneumonia hospitalized in Malaysia, in 2017-2018. The complete genome sequence analysis demonstrated that the isolated strain, CCoV-HuPn-2018, was a novel canine-feline-like recombinant virus with a unique nucleoprotein. The occurrence of three human epidemics/pandemic caused by CoVs in the recent years and the detection of CCoV-HuPn-2018, raises questions about the ability of these viruses to overcome species barriers from their reservoirs jumping to humans. Interestingly, in this perspective, it is interesting to consider the report concerning new CCoV strains with a potential dual recombinant origin through partial S-gene exchange with porcine transmissible gastroenteritis virus (TGEV) identified in pups died with acute gastroenteritis in 2009. The significance of the ability of CCoVs to evolve is still unclear, but several questions arisen on the biology of these viruses, focusing important epidemiological outcomes in the field, in terms of both virus evolution and prophylaxis. The new CCoV-Hupn-2018 should lead researchers to pay more attention to the mechanisms of recombination among CoVs, rather than to the onset of variants as a result of mutations, suggesting a continuous monitoring of these viruses and in particular of SARS-CoV-2.


Subject(s)
COVID-19 , Cat Diseases , Coronavirus, Canine , Dog Diseases , Animals , Biology , COVID-19/veterinary , Cats , Coronavirus, Canine/genetics , Dog Diseases/epidemiology , Dogs , Humans , Phylogeny , SARS-CoV-2
13.
Clin Infect Dis ; 74(3): 446-454, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1251708

ABSTRACT

BACKGROUND: During the validation of a highly sensitive panspecies coronavirus (CoV) seminested reverse-transcription polymerase chain reaction (RT-PCR) assay, we found canine CoV (CCoV) RNA in nasopharyngeal swab samples from 8 of 301 patients (2.5%) hospitalized with pneumonia during 2017-2018 in Sarawak, Malaysia. Most patients were children living in rural areas with frequent exposure to domesticated animals and wildlife. METHODS: Specimens were further studied with universal and species-specific CoV and CCoV 1-step RT-PCR assays, and viral isolation was performed in A72 canine cells. Complete genome sequencing was conducted using the Sanger method. RESULTS: Two of 8 specimens contained sufficient amounts of CCoVs as confirmed by less-sensitive single-step RT-PCR assays, and 1 specimen demonstrated cytopathic effects in A72 cells. Complete genome sequencing of the virus causing cytopathic effects identified it as a novel canine-feline recombinant alphacoronavirus (genotype II) that we named CCoV-human pneumonia (HuPn)-2018. Most of the CCoV-HuPn-2018 genome is more closely related to a CCoV TN-449, while its S gene shared significantly higher sequence identity with CCoV-UCD-1 (S1 domain) and a feline CoV WSU 79-1683 (S2 domain). CCoV-HuPn-2018 is unique for a 36-nucleotide (12-amino acid) deletion in the N protein and the presence of full-length and truncated 7b nonstructural protein, which may have clinical relevance. CONCLUSIONS: This is the first report of a novel canine-feline recombinant alphacoronavirus isolated from a human patient with pneumonia. If confirmed as a pathogen, it may represent the eighth unique coronavirus known to cause disease in humans. Our findings underscore the public health threat of animal CoVs and a need to conduct better surveillance for them.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Pneumonia , Animals , Cats , Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Dogs , Humans , Malaysia , Phylogeny
14.
Comput Struct Biotechnol J ; 19: 1072-1080, 2021.
Article in English | MEDLINE | ID: covidwho-1056514

ABSTRACT

The coronavirus (CoV) infects a broad range of hosts including humans as well as a variety of animals. It has gained overwhelming concerns since the emergence of deadly human coronaviruses (HCoVs), severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, followed by Middle East respiratory syndrome coronavirus (MERS-CoV) in 2015. Very recently, special attention has been paid to the novel coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 due to its high mobility and mortality. As the COVID-19 pandemic continues, despite vast research efforts, the effective pharmaceutical interventions are still not available for clinical uses. Both expanded knowledge on structure insights and the essential function of viral nucleocapsid (N) protein are key basis for the development of novel, and potentially, a broad-spectrum inhibitor against coronavirus diseases. This review aimed to delineate the current research from the perspective of biochemical and structural study in cell-based assays as well as virtual screen approaches to identify N protein antagonists targeting not only HCoVs but also animal CoVs.

15.
Transbound Emerg Dis ; 2020 Mar 12.
Article in English | MEDLINE | ID: covidwho-796708

ABSTRACT

Canine coronavirus (CCoV) strains with the ability to spread to internal organs, also known as pantropic CCoVs (pCCoVs), have been detected in domestic dogs and wild carnivores. Our study focused on the detection and molecular characterization of pCCoV strains circulating in Italy during the period 2014-2017 in autochthonous dogs, in dogs imported from eastern Europe or illegally imported from an unknown country. Samples from the gut and internal organs of 352 dogs were screened for CCoV; putative pCCoV strains, belonging to subtype CCoV-IIa, were identified in the internal organs of 35 of the examined dogs. Fifteen pCCoV strains were subjected to sequence and phylogenetic analyses, showing that three strains (98960-1/2016, 98960-3/2016, 98960-4/2016) did not cluster either with Italian or European CCoVs, being more closely related to alphacoronaviruses circulating in Asia with which they displayed a 94%-96% nucleotide identity in partial spike protein gene sequences. The pCCoV-positive samples were also tested for other canine viruses, showing co-infections mainly with canine parvovirus.

16.
Microb Pathog ; 145: 104209, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-72283

ABSTRACT

As the outbreaks of COVID-19 in worldwide, coronavirus has once again caught the attention of people. Canine coronavirus is widespread among dog population, and sometimes causes even fatal cases. Here, to characterize the prevalence and evolution of current circulating canine coronavirus (CCoV) strains in China, we collected 213 fecal samples from diarrheic pet dogs between 2018 and 2019. Of the 213 samples, we found 51 (23.94%) were positive for CCoV. Co-infection with canine parvovirus (CPV), canine astrovirus (CaAstV), canine kobuvirus (CaKV), Torque teno canis virus (TTCaV) were ubiquitous existed. Mixed infection of different CCoV subtypes exists extensively. Considering the limited sequences data in recent years, we sequenced 7 nearly complete genomes and 10 complete spike gene. Phylogenetic analysis of spike gene revealed a new subtype CCoV-II Variant and CCoV-IIa was the most prevalent subtype currently circulating. Moreover, we identified strain B906_ZJ_2019 shared 93.24% nucleotide identifies with previous strain A76, and both of them clustered with CCoV-II Variant, which were not well clustered with the known subtypes. Recombination analysis of B906_ZJ_2019 indicated that strain B906_ZJ_2019 may a recombinant variant between CCoV-I and CCoV-II, which is consistent with strain A76. Furthermore, amino acid variations widely existed among current CCoV-IIa strains circulating in China and the classic CCoV-IIa strains, in spite of the unknown functions. In a word, we report a useful information as to the etiology and evolution of canine coronavirus in China based on the available sequences, which is urgent for the devise of future effective disease prevention and control strategies.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Canine/classification , Coronavirus, Canine/genetics , Dog Diseases/epidemiology , Genome, Viral/genetics , Animals , Base Sequence , China/epidemiology , Coronavirus Infections/epidemiology , DNA, Viral/genetics , Dog Diseases/virology , Dogs , Feces/virology , Phylogeny , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics
17.
Anim Dis ; 1(1): 10, 2021.
Article in English | MEDLINE | ID: covidwho-1516624

ABSTRACT

Canine coronavirus (CCoV), a member of the genus Alphacoronavirus, is an enveloped, single-stranded positive-sense RNA virus that responsible for gastroenteritis in dogs. In this study, two CCoV isolates were successfully propagated from 53 CCoV-positive clinical specimens by serial passaging in A-72 cells. These two strains, CCoV JS1706 and CCoV JS1712, caused cytopathic effects in A-72 cells. The sizes of virus plaque formed by them differed in early passages. Electron microscopy revealed a large quantity of typical coronavirus particles with 80-120 nm in diameter in cell culture media and cytoplasm of infected cells, in which they appeared as inclusion bodies. RT-PCR analysis of S gene indicated that these two isolates were belonged to CCoV IIa subtype. Homology of RdRp, S, M and N proteins between the two strains were 100, 99.6, 99.2 and 100.0%, respectively, whereas they were 99.4-100%, 83.1-95.2%, 88.5-99.2% and 91.9-99.7% identity compared to CCoV II reference strains. Phylogenetic analysis of RdRp, S, M and N protein showed that they were closely related to CCoV II strains. These two subtype IIa isolates will be useful for evaluating the pathogenesis and evolution of CCoV and for developing diagnostic reagents and vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL