Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 2.797
Filter
Add filters

Year range
1.
Cogn Neurodyn ; : 1-14, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-20242747

ABSTRACT

COVID-19 was first identified in December 2019 at Wuhan, China. At present, the outbreak of COVID-19 pandemic has resulted in severe consequences on both economic and social infrastructures of the developed and developing countries. Several studies have been conducted and ongoing still to design efficient models for diagnosis and treatment of COVID-19 patients. The traditional diagnostic models that use reverse transcription-polymerase chain reaction (rt-qPCR) is a costly and time-consuming process. So, automated COVID-19 diagnosis using Deep Learning (DL) models becomes essential. The primary intention of this study is to design an effective model for diagnosis and classification of COVID-19. This research work introduces an automated COVID-19 diagnosis process using Convolutional Neural Network (CNN) with a fusion-based feature extraction model, called FM-CNN. FM-CNN model has three major phases namely, pre-processing, feature extraction, and classification. Initially, Wiener Filtering (WF)-based preprocessing is employed to discard the noise that exists in input chest X-Ray (CXR) images. Then, the pre-processed images undergo fusion-based feature extraction model which is a combination of Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRM), and Local Binary Patterns (LBP). In order to determine the optimal subset of features, Particle Swarm Optimization (PSO) algorithm is employed. At last, CNN is deployed as a classifier to identify the existence of binary and multiple classes of CXR images. In order to validate the proficiency of the proposed FM-CNN model in terms of its diagnostic performance, extension experimentation was carried out upon CXR dataset. As per the results attained from simulation, FM-CNN model classified multiple classes with the maximum sensitivity of 97.22%, specificity of 98.29%, accuracy of 98.06%, and F-measure of 97.93%.

2.
Ann Med Surg (Lond) ; 85(5): 1699-1704, 2023 May.
Article in English | MEDLINE | ID: covidwho-20242909

ABSTRACT

Caesarean section is performed when there are pregnancy related complications and vaginal delivery cannot be tried or fails. The effect of pandemic lockdown on the availability as well as accessibility of health services is a global concern. The aim of this study was to find out the caesarean section rate and its indication at a tertiary care hospital during COVID-19 pandemic. Methods: A hospital-based cross-sectional study was conducted among women admitted for delivery in the Department of Obstetrics and Gynecology of a tertiary teaching hospital during the second wave of COVID-19 (1 May 2021-30 July 2021). Convenience sampling technique was applied and 1350 women were categorized into groups using Robson ten group classification system. Group size, group caesarean rate, absolute and relative contribution of each group to overall caesarean rate were calculated. Results: Out of 1350 total deliveries during COVID-19, lower segment caesarean section was done in 446 (33.04%) (30.53-35.55 at 95% Confidence Interval). Major indication for caesarean section was previous caesarean in 185 (41.48%). Most women 202 (45.29%) were from the age group 24-30 years and gestational age between 37 and 42 weeks. Major contributor to the overall caesarean section rate was Robson group 5 (37%). Conclusions: This study showed higher prevalence of caesarean section delivery rate during COVID-19 pandemic than that compared with 2016 national statistics of Nepal. Despite of several challenges brought by the pandemic, pregnant women were still able to access the emergency obstetric care services in the Eastern part of Nepal. However, future studies should focus on exploring the situation in rural areas too.

3.
J Med Virol ; 95(6): e28854, 2023 06.
Article in English | MEDLINE | ID: covidwho-20241758

ABSTRACT

Nirmatrelvir/ritonavir (Paxlovid), an oral antiviral medication targeting SARS-CoV-2, remains an important treatment for COVID-19. Initial studies of nirmatrelvir/ritonavir were performed in SARS-CoV-2 unvaccinated patients without prior confirmed SARS-CoV-2 infection; however, most individuals have now either been vaccinated and/or have experienced SARS-CoV-2 infection. After nirmatrelvir/ritonavir became widely available, reports surfaced of "Paxlovid rebound," a phenomenon in which symptoms (and SARS-CoV-2 test positivity) would initially resolve, but after finishing treatment, symptoms and test positivity would return. We used a previously described parsimonious mathematical model of immunity to SARS-CoV-2 infection to model the effect of nirmatrelvir/ritonavir treatment in unvaccinated and vaccinated patients. Model simulations show that viral rebound after treatment occurs only in vaccinated patients, while unvaccinated (SARS-COV-2 naïve) patients treated with nirmatrelvir/ritonavir do not experience any rebound in viral load. This work suggests that an approach combining parsimonious models of the immune system could be used to gain important insights in the context of emerging pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ritonavir/therapeutic use , COVID-19/diagnosis , Antiviral Agents/therapeutic use
4.
Res Synth Methods ; 14(4): 608-621, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20241233

ABSTRACT

The laborious and time-consuming nature of systematic review production hinders the dissemination of up-to-date evidence synthesis. Well-performing natural language processing (NLP) tools for systematic reviews have been developed, showing promise to improve efficiency. However, the feasibility and value of these technologies have not been comprehensively demonstrated in a real-world review. We developed an NLP-assisted abstract screening tool that provides text inclusion recommendations, keyword highlights, and visual context cues. We evaluated this tool in a living systematic review on SARS-CoV-2 seroprevalence, conducting a quality improvement assessment of screening with and without the tool. We evaluated changes to abstract screening speed, screening accuracy, characteristics of included texts, and user satisfaction. The tool improved efficiency, reducing screening time per abstract by 45.9% and decreasing inter-reviewer conflict rates. The tool conserved precision of article inclusion (positive predictive value; 0.92 with tool vs. 0.88 without) and recall (sensitivity; 0.90 vs. 0.81). The summary statistics of included studies were similar with and without the tool. Users were satisfied with the tool (mean satisfaction score of 4.2/5). We evaluated an abstract screening process where one human reviewer was replaced with the tool's votes, finding that this maintained recall (0.92 one-person, one-tool vs. 0.90 two tool-assisted humans) and precision (0.91 vs. 0.92) while reducing screening time by 70%. Implementing an NLP tool in this living systematic review improved efficiency, maintained accuracy, and was well-received by researchers, demonstrating the real-world effectiveness of NLP in expediting evidence synthesis.


Subject(s)
COVID-19 , Natural Language Processing , Humans , Seroepidemiologic Studies , SARS-CoV-2 , Systematic Reviews as Topic
5.
Neural Comput Appl ; : 1-29, 2023 May 27.
Article in English | MEDLINE | ID: covidwho-20240081

ABSTRACT

The spread of the COVID-19 started back in 2019; and so far, more than 4 million people around the world have lost their lives to this deadly virus and its variants. In view of the high transmissibility of the Corona virus, which has turned this disease into a global pandemic, artificial intelligence can be employed as an effective tool for an earlier detection and treatment of this illness. In this review paper, we evaluate the performance of the deep learning models in processing the X-Ray and CT-Scan images of the Corona patients' lungs and describe the changes made to these models in order to enhance their Corona detection accuracy. To this end, we introduce the famous deep learning models such as VGGNet, GoogleNet and ResNet and after reviewing the research works in which these models have been used for the detection of COVID-19, we compare the performances of the newer models such as DenseNet, CapsNet, MobileNet and EfficientNet. We then present the deep learning techniques of GAN, transfer learning, and data augmentation and examine the statistics of using these techniques. Here, we also describe the datasets introduced since the onset of the COVID-19. These datasets contain the lung images of Corona patients, healthy individuals, and the patients with non-Corona pulmonary diseases. Lastly, we elaborate on the existing challenges in the use of artificial intelligence for COVID-19 detection and the prospective trends of using this method in similar situations and conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s00521-023-08683-x.

6.
Bioengineering (Basel) ; 10(5)2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-20240058

ABSTRACT

Even with over 80% of the population being vaccinated against COVID-19, the disease continues to claim victims. Therefore, it is crucial to have a secure Computer-Aided Diagnostic system that can assist in identifying COVID-19 and determining the necessary level of care. This is especially important in the Intensive Care Unit to monitor disease progression or regression in the fight against this epidemic. To accomplish this, we merged public datasets from the literature to train lung and lesion segmentation models with five different distributions. We then trained eight CNN models for COVID-19 and Common-Acquired Pneumonia classification. If the examination was classified as COVID-19, we quantified the lesions and assessed the severity of the full CT scan. To validate the system, we used Resnetxt101 Unet++ and Mobilenet Unet for lung and lesion segmentation, respectively, achieving accuracy of 98.05%, F1-score of 98.70%, precision of 98.7%, recall of 98.7%, and specificity of 96.05%. This was accomplished in just 19.70 s per full CT scan, with external validation on the SPGC dataset. Finally, when classifying these detected lesions, we used Densenet201 and achieved accuracy of 90.47%, F1-score of 93.85%, precision of 88.42%, recall of 100.0%, and specificity of 65.07%. The results demonstrate that our pipeline can correctly detect and segment lesions due to COVID-19 and Common-Acquired Pneumonia in CT scans. It can differentiate these two classes from normal exams, indicating that our system is efficient and effective in identifying the disease and assessing the severity of the condition.

7.
Evol Syst (Berl) ; : 1-18, 2023 Jun 04.
Article in English | MEDLINE | ID: covidwho-20239827

ABSTRACT

Coronavirus emerged as a highly contagious, pathogenic virus that severely affects the respiratory system of humans. The epidemic-related data is collected regularly, which machine learning algorithms can employ to comprehend and estimate valuable information. The analysis of the gathered data through time series approaches may assist in developing more accurate forecasting models and strategies to combat the disease. This paper focuses on short-term forecasting of cumulative reported incidences and mortality. Forecasting is conducted utilizing state-of-the-art mathematical and deep learning models for multivariate time series forecasting, including extended susceptible-exposed-infected-recovered (SEIR), long-short-term memory (LSTM), and vector autoregression (VAR). The SEIR model has been extended by integrating additional information such as hospitalization, mortality, vaccination, and quarantine incidences. Extensive experiments have been conducted to compare deep learning and mathematical models that enable us to estimate fatalities and incidences more precisely based on mortality in the eight most affected nations during the time of this research. The metrics like mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) are employed to gauge the model's effectiveness. The deep learning model LSTM outperformed all others in terms of forecasting accuracy. Additionally, the study explores the impact of vaccination on reported epidemics and deaths worldwide. Furthermore, the detrimental effects of ambient temperature and relative humidity on pathogenic virus dissemination have been analyzed.

8.
Healthcare (Basel) ; 11(11)2023 May 26.
Article in English | MEDLINE | ID: covidwho-20239197

ABSTRACT

Pneumonia has been directly responsible for a huge number of deaths all across the globe. Pneumonia shares visual features with other respiratory diseases, such as tuberculosis, which can make it difficult to distinguish between them. Moreover, there is significant variability in the way chest X-ray images are acquired and processed, which can impact the quality and consistency of the images. This can make it challenging to develop robust algorithms that can accurately identify pneumonia in all types of images. Hence, there is a need to develop robust, data-driven algorithms that are trained on large, high-quality datasets and validated using a range of imaging techniques and expert radiological analysis. In this research, a deep-learning-based model is demonstrated for differentiating between normal and severe cases of pneumonia. This complete proposed system has a total of eight pre-trained models, namely, ResNet50, ResNet152V2, DenseNet121, DenseNet201, Xception, VGG16, EfficientNet, and MobileNet. These eight pre-trained models were simulated on two datasets having 5856 images and 112,120 images of chest X-rays. The best accuracy is obtained on the MobileNet model with values of 94.23% and 93.75% on two different datasets. Key hyperparameters including batch sizes, number of epochs, and different optimizers have all been considered during comparative interpretation of these models to determine the most appropriate model.

9.
Syst Rev ; 12(1): 94, 2023 06 05.
Article in English | MEDLINE | ID: covidwho-20238036

ABSTRACT

BACKGROUND: The COVID-19 pandemic has led to an unprecedented amount of scientific publications, growing at a pace never seen before. Multiple living systematic reviews have been developed to assist professionals with up-to-date and trustworthy health information, but it is increasingly challenging for systematic reviewers to keep up with the evidence in electronic databases. We aimed to investigate deep learning-based machine learning algorithms to classify COVID-19-related publications to help scale up the epidemiological curation process. METHODS: In this retrospective study, five different pre-trained deep learning-based language models were fine-tuned on a dataset of 6365 publications manually classified into two classes, three subclasses, and 22 sub-subclasses relevant for epidemiological triage purposes. In a k-fold cross-validation setting, each standalone model was assessed on a classification task and compared against an ensemble, which takes the standalone model predictions as input and uses different strategies to infer the optimal article class. A ranking task was also considered, in which the model outputs a ranked list of sub-subclasses associated with the article. RESULTS: The ensemble model significantly outperformed the standalone classifiers, achieving a F1-score of 89.2 at the class level of the classification task. The difference between the standalone and ensemble models increases at the sub-subclass level, where the ensemble reaches a micro F1-score of 70% against 67% for the best-performing standalone model. For the ranking task, the ensemble obtained the highest recall@3, with a performance of 89%. Using an unanimity voting rule, the ensemble can provide predictions with higher confidence on a subset of the data, achieving detection of original papers with a F1-score up to 97% on a subset of 80% of the collection instead of 93% on the whole dataset. CONCLUSION: This study shows the potential of using deep learning language models to perform triage of COVID-19 references efficiently and support epidemiological curation and review. The ensemble consistently and significantly outperforms any standalone model. Fine-tuning the voting strategy thresholds is an interesting alternative to annotate a subset with higher predictive confidence.


Subject(s)
COVID-19 , Deep Learning , Humans , Pandemics , Retrospective Studies , Language
10.
J Med Virol ; 95(6): e28826, 2023 06.
Article in English | MEDLINE | ID: covidwho-20236368

ABSTRACT

The mechanistic understanding of virus infection and inflammation in many diseases is incomplete. Normally, messenger RNA (mRNA) tails of replication-dependent histones (RDH) that safeguard naked nuclear DNAs are protected by a specialized stem-loop instead of polyadenylation. Here, we showed that infection by various RNA viruses (including severe acute respiratory syndrome coronavirus 2) induced aberrant polyadenylation of RDH mRNAs (pARDH) that resulted in inflammation or cellular senescence, based on which we constructed a pARDH inflammation score (pARIS). We further investigated pARIS elevation in various disease conditions, including different types of virus infection, cancer, and cellular senescence. Notably, we found that pARIS was positively correlated with coronavirus disease 2019 severity in specific immune cell types. We also detected a subset of HIV-1 elite controllers characterized by pARDH "flipping" potentially mediated by HuR. Importantly, pARIS was positively associated with transcription of endogenous retrovirus but negatively associated with most immune cell infiltration in tumors of various cancer types. Finally, we identified and experimentally verified two pARIS regulators, ADAR1 and ZKSCAN1, which was first linked to inflammation. The ZKSCAN1 was known as a transcription factor but instead was shown to regulate pARIS as a novel RNA binding protein. Both regulators were upregulated under most infection and inflammation conditions. In conclusion, we unraveled a potential antiviral mechanism underlying various types of virus infections and cancers.


Subject(s)
COVID-19 , Neoplasms , Humans , Histones , Polyadenylation , RNA, Messenger/metabolism , Inflammation , Neoplasms/genetics
11.
Diagnostics (Basel) ; 13(10)2023 May 19.
Article in English | MEDLINE | ID: covidwho-20233941

ABSTRACT

COVID-19 is an infectious disease caused by the deadly virus SARS-CoV-2 that affects the lung of the patient. Different symptoms, including fever, muscle pain and respiratory syndrome, can be identified in COVID-19-affected patients. The disease needs to be diagnosed in a timely manner, otherwise the lung infection can turn into a severe form and the patient's life may be in danger. In this work, an ensemble deep learning-based technique is proposed for COVID-19 detection that can classify the disease with high accuracy, efficiency, and reliability. A weighted average ensemble (WAE) prediction was performed by combining three CNN models, namely Xception, VGG19 and ResNet50V2, where 97.25% and 94.10% accuracy was achieved for binary and multiclass classification, respectively. To accurately detect the disease, different test methods have been proposed and developed, some of which are even being used in real-time situations. RT-PCR is one of the most successful COVID-19 detection methods, and is being used worldwide with high accuracy and sensitivity. However, complexity and time-consuming manual processes are limitations of this method. To make the detection process automated, researchers across the world have started to use deep learning to detect COVID-19 applied on medical imaging. Although most of the existing systems offer high accuracy, different limitations, including high variance, overfitting and generalization errors, can be found that can degrade the system performance. Some of the reasons behind those limitations are a lack of reliable data resources, missing preprocessing techniques, a lack of proper model selection, etc., which eventually create reliability issues. Reliability is an important factor for any healthcare system. Here, transfer learning with better preprocessing techniques applied on two benchmark datasets makes the work more reliable. The weighted average ensemble technique with hyperparameter tuning ensures better accuracy than using a randomly selected single CNN model.

12.
Digit Health ; 9: 20552076231180054, 2023.
Article in English | MEDLINE | ID: covidwho-20232672

ABSTRACT

Objective: Recently, monkeypox virus is slowly evolving and there are fears it will spread as COVID-19. Computer-aided diagnosis (CAD) based on deep learning approaches especially convolutional neural network (CNN) can assist in the rapid determination of reported incidents. The current CADs were mostly based on an individual CNN. Few CADs employed multiple CNNs but did not investigate which combination of CNNs has a greater impact on the performance. Furthermore, they relied on only spatial information of deep features to train their models. This study aims to construct a CAD tool named "Monkey-CAD" that can address the previous limitations and automatically diagnose monkeypox rapidly and accurately. Methods: Monkey-CAD extracts features from eight CNNs and then examines the best possible combination of deep features that influence classification. It employs discrete wavelet transform (DWT) to merge features which diminishes fused features' size and provides a time-frequency demonstration. These deep features' sizes are then further reduced via an entropy-based feature selection approach. These reduced fused features are finally used to deliver a better representation of the input features and feed three ensemble classifiers. Results: Two freely accessible datasets called Monkeypox skin image (MSID) and Monkeypox skin lesion (MSLD) are employed in this study. Monkey-CAD could discriminate among cases with and without Monkeypox achieving an accuracy of 97.1% for MSID and 98.7% for MSLD datasets respectively. Conclusions: Such promising results demonstrate that the Monkey-CAD can be employed to assist health practitioners. They also verify that fusing deep features from selected CNNs can boost performance.

13.
Proceedings of SPIE - The International Society for Optical Engineering ; 12602, 2023.
Article in English | Scopus | ID: covidwho-20245409

ABSTRACT

Nowadays, with the outbreak of COVID-19, the prevention and treatment of COVID-19 has gradually become the focus of social disease prevention, and most patients are also more concerned about the symptoms. COVID-19 has symptoms similar to the common cold, and it cannot be diagnosed based on the symptoms shown by the patient, so it is necessary to observe medical images of the lungs to finally determine whether they are COVID-19 positive. As the number of patients with symptoms similar to pneumonia increases, more and more medical images of the lungs need to be generated. At the same time, the number of physicians at this stage is far from meeting the needs of patients, resulting in patients unable to detect and understand their own conditions in time. In this regard, we have performed image augmentation, data cleaning, and designed a deep learning classification network based on the data set of COVID-19 lung medical images. accurate classification judgment. The network can achieve 95.76% classification accuracy for this task through a new fine-tuning method and hyperparameter tuning we designed, which has higher accuracy and less training time than the classic convolutional neural network model. © 2023 SPIE.

14.
International Journal of Imaging Systems and Technology ; 2023.
Article in English | Web of Science | ID: covidwho-20245312
15.
Interactive Learning Environments ; : No Pagination Specified, 2023.
Article in English | APA PsycInfo | ID: covidwho-20245175

ABSTRACT

Mobile application developers rely largely on user reviews for identifying issues in mobile applications and meeting the users' expectations. User reviews are unstructured, unorganized and very informal. Identifying and classifying issues by extracting required information from reviews is difficult due to a large number of reviews. To automate the process of classifying reviews many researchers have adopted machine learning approaches. Keeping in view, the rising demand for educational applications, especially during COVID-19, this research aims to automate Android application education reviews' classification and sentiment analysis using natural language processing and machine learning techniques. A baseline corpus comprising 13,000 records has been built by collecting reviews of more than 20 educational applications. The reviews were then manually labelled with respect to sentiment and issue types mentioned in each review. User reviews are classified into eight categories and various machine learning algorithms are applied to classify users' sentiments and issues of applications. The results demonstrate that our proposed framework achieved an accuracy of 97% for sentiment identification and an accuracy of 94% in classifying the most significant issues. Moreover, the interpretability of the model is verified by using the explainable artificial intelligence technique of local interpretable model-agnostic explanations. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

16.
Journal of Computational and Graphical Statistics ; 32(2):588-600, 2023.
Article in English | ProQuest Central | ID: covidwho-20245126

ABSTRACT

High-dimensional classification and feature selection tasks are ubiquitous with the recent advancement in data acquisition technology. In several application areas such as biology, genomics, and proteomics, the data are often functional in their nature and exhibit a degree of roughness and nonstationarity. These structures pose additional challenges to commonly used methods that rely mainly on a two-stage approach performing variable selection and classification separately. We propose in this work a novel Gaussian process discriminant analysis (GPDA) that combines these steps in a unified framework. Our model is a two-layer nonstationary Gaussian process coupled with an Ising prior to identify differentially-distributed locations. Scalable inference is achieved via developing a variational scheme that exploits advances in the use of sparse inverse covariance matrices. We demonstrate the performance of our methodology on simulated datasets and two proteomics datasets: breast cancer and SARS-CoV-2. Our approach distinguishes itself by offering explainability as well as uncertainty quantification in addition to low computational cost, which are crucial to increase trust and social acceptance of data-driven tools. Supplementary materials for this article are available online.

17.
Proceedings of SPIE - The International Society for Optical Engineering ; 12597, 2023.
Article in English | Scopus | ID: covidwho-20244438

ABSTRACT

In supply chain management (SCM), product classification and demand forecasting are crucial pillars to ensure companies to have production in the right category and quantity for long-term profitability. Due to COVID-19 from 2019, the automobile industry has been seriously negatively affected as the demand dropped dramatically. Therefore, it is necessary to make reasonable product classification and accurate demand forecasting to facilitate automobile companies in SCM to reduce unpopular product manufacture and unnecessary storage costs. In this paper, the Canada automobile market has been chosen with the period from 1946 to 2022. To classify a number of different types of motor vehicles into several categories with general characteristics, K-means Clustering method is applied. With the seasonal patterns and random generated features for auto sales, the time series models ARIMA and SARIMA are adopted for demand forecasting. According to the analysis, the automobiles fitting in the category with high demand and low price are valuable for further production. In addition, SARIMA Model is more accurate and fits better than ARIMA Model for both the training and test datasets for long-term prediction. The classification and forecasting results shed light on guiding manufacturers to adjust production schemes and ensuring auto dealers to predict more accurate sales in order to optimize the strategic planning. © 2023 SPIE.

18.
ACM International Conference Proceeding Series ; 2022.
Article in English | Scopus | ID: covidwho-20244307

ABSTRACT

This paper proposes a deep learning-based approach to detect COVID-19 infections in lung tissues from chest Computed Tomography (CT) images. A two-stage classification model is designed to identify the infection from CT scans of COVID-19 and Community Acquired Pneumonia (CAP) patients. The proposed neural model named, Residual C-NiN uses a modified convolutional neural network (CNN) with residual connections and a Network-in-Network (NiN) architecture for COVID-19 and CAP detection. The model is trained with the Signal Processing Grand Challenge (SPGC) 2021 COVID dataset. The proposed neural model achieves a slice-level classification accuracy of 93.54% on chest CT images and patient-level classification accuracy of 86.59% with class-wise sensitivity of 92.72%, 55.55%, and 95.83% for COVID-19, CAP, and Normal classes, respectively. Experimental results show the benefit of adding NiN and residual connections in the proposed neural architecture. Experiments conducted on the dataset show significant improvement over the existing state-of-the-art methods reported in the literature. © 2022 ACM.

19.
Electronics ; 12(11):2378, 2023.
Article in English | ProQuest Central | ID: covidwho-20244207

ABSTRACT

This paper presents a control system for indoor safety measures using a Faster R-CNN (Region-based Convolutional Neural Network) architecture. The proposed system aims to ensure the safety of occupants in indoor environments by detecting and recognizing potential safety hazards in real time, such as capacity control, social distancing, or mask use. Using deep learning techniques, the system detects these situations to be controlled, notifying the person in charge of the company if any of these are violated. The proposed system was tested in a real teaching environment at Rey Juan Carlos University, using Raspberry Pi 4 as a hardware platform together with an Intel Neural Stick board and a pair of PiCamera RGB (Red Green Blue) cameras to capture images of the environment and a Faster R-CNN architecture to detect and classify objects within the images. To evaluate the performance of the system, a dataset of indoor images was collected and annotated for object detection and classification. The system was trained using this dataset, and its performance was evaluated based on precision, recall, and F1 score. The results show that the proposed system achieved a high level of accuracy in detecting and classifying potential safety hazards in indoor environments. The proposed system includes an efficiently implemented software infrastructure to be launched on a low-cost hardware platform, which is affordable for any company, regardless of size or revenue, and it has the potential to be integrated into existing safety systems in indoor environments such as hospitals, warehouses, and factories, to provide real-time monitoring and alerts for safety hazards. Future work will focus on enhancing the system's robustness and scalability to larger indoor environments with more complex safety hazards.

20.
ACM International Conference Proceeding Series ; 2022.
Article in English | Scopus | ID: covidwho-20243833

ABSTRACT

The COVID-19 pandemic still affects most parts of the world today. Despite a lot of research on diagnosis, prognosis, and treatment, a big challenge today is the limited number of expert radiologists who provide diagnosis and prognosis on X-Ray images. Thus, to make the diagnosis of COVID-19 accessible and quicker, several researchers have proposed deep-learning-based Artificial Intelligence (AI) models. While most of these proposed machine and deep learning models work in theory, they may not find acceptance among the medical community for clinical use due to weak statistical validation. For this article, radiologists' views were considered to understand the correlation between the theoretical findings and real-life observations. The article explores Convolutional Neural Network (CNN) classification models to build a four-class viz. "COVID-19", "Lung Opacity", "Pneumonia", and "Normal"classifiers, which also provide the uncertainty measure associated with each class. The authors also employ various pre-processing techniques to enhance the X-Ray images for specific features. To address the issues of over-fitting while training, as well as to address the class imbalance problem in our dataset, we use Monte Carlo dropout and Focal Loss respectively. Finally, we provide a comparative analysis of the following classification models - ResNet-18, VGG-19, ResNet-152, MobileNet-V2, Inception-V3, and EfficientNet-V2, where we match the state-of-the-art results on the Open Benchmark Chest X-ray datasets, with a sensitivity of 0.9954, specificity of 0.9886, the precision of 0.9880, F1-score of 0.9851, accuracy of 0.9816, and receiver operating characteristic (ROC) of the area under the curve (AUC) of 0.9781 (ROC-AUC score). © 2022 ACM.

SELECTION OF CITATIONS
SEARCH DETAIL