Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Mol Genet Metab Rep ; 32: 100897, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1926984

ABSTRACT

Background: Patients with phenylketonuria (PKU) must maintain a lifelong natural protein-restricted diet to prevent neuro-cognitive damage. Early diagnosis is established with newborn screening, with diet subsequently controlled by regular phenylalanine (Phe) monitoring. During the COVID-19 pandemic, significant lockdown measures were introduced that may have influenced the above. Aim of our study: To establish whether the diagnosis was delayed in neonates during the pandemic. In addition, metabolic control was further assessed during the COVID-19 pandemic era (CE) compared to the same period a year prior (non-COVID-19 era, NCE). The lockdown periods (LD) were also compared with unrestricted periods (URP). Patients methods: Six neonates born during the CE and eight neonates born during NCE were included in the newborn screening analysis. Seventy-two classical PKU patients aged 2-18 years and categorized as children (2-12 years; 51 patients) and adolescents (>13 years; 21 patients) were included in the metabolic control analysis. The frequency of dried blood spot (DBS) sampling and Phe levels were assessed according to the different periods. Results: There was no diagnostic or therapeutic delay in reaching the recommended Phe range in neonates born during CE compared to those born in NCE (median [interquartile range, IQR]: 23.5 [22.5-24] vs. 22 [18.0-27] days, p = NS). The cumulative DBS sampling frequency in children increased by 9.9% in the CE while no change was noted in the adolescent group. The median Phe level increased significantly in both age groups in the CE, but remained within the recommended target range. During CE, changes in Phe levels differed in the two age groups: children had the highest median Phe in the second lockdown period (LD2), while the adolescents had an increased Phe in URP.There were significant negative correlations between DBS sampling frequencies and Phe levels in both age groups in NCE (children: r - 0.43, p = 0.002; adolescents r = -0.37, p = 0.012), and in adolescents in CE (r = -0.62, p = 0.006). Conclusion: The pandemic did not impact newborn metabolic screening. The increased frequency of DBS sampling in CE and good target Phe levels suggest a better compliance in a very sensitive period. Since many factors may impact metabolic control in the different age groups, further studies are needed to analyse their respective role.

2.
J Clin Virol Plus ; 2(3): 100093, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1907273

ABSTRACT

Background: Dried blood spot (DBS) specimens are a useful serosurveillance tool particularly in hard-to-reach populations but their application for detecting SARS-CoV-2 infection is poorly characterised. Objectives: To compare detection of naturally acquired SARS-CoV-2 antibodies in paired DBS and serum specimens using commercially available serological immunoassays. Study Design: Specimens were collected through St Vincent's Hospital observational post COVID-19 cohort study (ADAPT). Laboratory spotted DBS from venepuncture were initially tested on seven assays, a DBS validation completed on three with clinically collected fingerstick DBSs tested on one. Results: Sensitivity for Euroimmun nucleocapsid (NCP) IgG ELISA from laboratory spotted DBS (n=145), Euroimmun spike, IgG ELISA from laboratory spotted DBS (n=161), and Binding Site total antibody ELISA from clinically collected fingerstick DBS (n=391) was 100% (95% CI: 95.8-100%), 100% (95% CI: 95.8-100%) and 92.9% (95% CI: 89.5-95.5%), respectively. Specificity was 66.2% (95% CI: 53.6-77.0%), 96% (95% CI: 88.7-99.1%) and 98.8% (95% CI: 93.3-99.9%), respectively. All three assays' results displayed a strong positive correlation between DBS compared to paired serum. Conclusions: The Binding Site™ spike total antibody and Euroimmun™ spike IgG ELISAs provided good analytical performance, demonstrating that DBS specimens could facilitate specimen collection in the epidemiological surveillance of SARS-CoV-2 infection. This is highly applicable in populations and settings where venepuncture is problematic (including community based regional/remote settings, nursing homes, prisons, and schools).

3.
BMC Infect Dis ; 22(1): 474, 2022 May 17.
Article in English | MEDLINE | ID: covidwho-1874997

ABSTRACT

BACKGROUND: HIV-1 drug resistance genotyping is critical to the monitoring of antiretroviral treatment. Data on HIV-1 genotyping success rates of different laboratory specimen types from multiple sources is still scarce. METHODS: In this cross-sectional study, we determined the laboratory genotyping success rates (GSR) and assessed the correlates of genotyping failure of 6837 unpaired dried blood spot (DBS) and plasma specimens. Specimens from multiple studies in a resource-constrained setting were analysed in our laboratory between 2016 and 2019. RESULTS: We noted an overall GSR of 65.7% and specific overall GSR for DBS and plasma of 49.8% and 85.9% respectively. The correlates of genotyping failure were viral load (VL) < 10,000 copies/mL (aOR 0.3 95% CI: 0.24-0.38; p < 0.0001), lack of viral load testing prior to genotyping (OR 0.85 95% CI: 0.77-0.94; p = 0.002), use of DBS specimens (aOR 0.10 95% CI: 0.08-0.14; p < 0.0001) and specimens from routine clinical diagnosis (aOR 1.4 95% CI: 1.10-1.75; p = 0.005). CONCLUSIONS: We report rapidly decreasing HIV-1 genotyping success rates between 2016 and 2019 with increased use of DBS specimens for genotyping and note decreasing median viral loads over the years. We recommend improvement in DBS handling, pre-genotyping viral load testing to screen samples to enhance genotyping success and the development of more sensitive assays with well-designed primers to genotype specimens with low or undetectable viral load, especially in this era where virological suppression rates are rising due to increased antiretroviral therapy roll-out.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Cross-Sectional Studies , Drug Resistance , Drug Resistance, Viral/genetics , Genotype , HIV-1/genetics , Humans , Specimen Handling , Viral Load
4.
Front Neurol ; 13: 830196, 2022.
Article in English | MEDLINE | ID: covidwho-1809451

ABSTRACT

Objective: The onset of the COVID-19 pandemic in March of 2020 forced a rapid pivot to telehealth and compelled a use-case experiment in specialty telehealth neurology movement disorders care. The aims of this study were to quantify the potential benefit of telehealth as an option to the Parkinson's disease community as shown by the first 9 months of the COVID-19 pandemic, and to quantify the potential impact of the absence of a deep brain stimulation (DBS) telehealth option on DBS patient follow-up. Methods: New patient visits to the Inova Parkinson's and Movement Disorder's Center from April to December 2020 (9 months) were retrospectively reviewed for telehealth vs. in-person, demographics (age, gender, race, primary insurance), chief complaint, prior movement disorders specialist (MDS) consultation, imaging tests ordered, and distance/travel time from primary zip code to clinic. Additionally, DBS programming visit volume from April to December 2020 was compared to DBS programming visit volume from April to December 2019. Results: Of the 1,097 new patients seen, 85% were via telehealth (N = 932) and 15% in person (N = 165). In the telehealth cohort, 97.75% had not consulted with an MDS before (N = 911), vs. 87.9% of in-person (N = 145). Age range was 61.8 +/- 17.9 years (telehealth), 68.8 +/- 16.0 years (in-person). Racial breakdown for telehealth was 60.7% White (N = 566), 10.4% Black (N = 97), 7.4% Asian (N = 69) and 4.5% Hispanic (N = 42); in-person was 70.9% White (N = 117), 5.5% Black (N = 9), 7.9% Asian (N = 13) and 5.5% Hispanic (N = 9). Top 5 consultation reasons, top 10 primary insurance providers and imaging studies ordered between the two cohorts were similar. Distance/travel time between primary zip code and clinic were 33.8 +/- 104.8 miles and 42.2 +/- 93.4 min (telehealth) vs. 38.1 +/- 114.7 miles and 44.1 +/- 97.6 min (in-person). DBS programming visits dropped 24.8% compared to the same period the year before (254 visits to 191 visits). Conclusion: Telehealth-based new patient visits to a Movement Disorders Center appeared successful at increasing access to specialty care. The minimal difference in supporting data highlights the potential parity to in-person visits. With no telehealth option for DBS visits, a significant drop-off was seen in routine DBS management.

5.
Vaccines (Basel) ; 10(4)2022 Mar 26.
Article in English | MEDLINE | ID: covidwho-1792378

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a major global public health crisis. In response, researchers and pharmaceutical companies worked together for the rapid development of vaccines to reduce the morbidity and mortality associated with viral infection. Monitoring host immunity following virus infection and/or vaccination is essential to guide vaccination intervention policy. Humoral immune response to vaccination can be assessed with serologic testing, and indeed, many serological immunoassays are now in use. However, these many different assays make the standardization of test results difficult. Moreover, most published serological tests require venous blood sampling, which makes testing large numbers of people complex and costly. Here, we validate the GSP®/DELFIA® Anti-SARS-CoV-2 IgG kit using dried blood samples for high-throughput serosurveillance using standard quantitative measurements of anti-spike S1 IgG antibody concentrations. We then apply our validated assay to compare post-vaccination anti-SARS-CoV-2 S1 IgG levels from subjects who received a double dose of the AZD1222 vaccine with those vaccinated with a heterologous strategy, demonstrating how this assay is suitable for large-scale screening to achieve a clearer population immune picture.

6.
Deutsche Zeitschrift fur Sportmedizin ; 73(2):53-60, 2022.
Article in English | Scopus | ID: covidwho-1786247

ABSTRACT

Rationale: Anti-SARS-CoV-2 antibody responses elicited by infection or vaccination vary among individuals and over time. Their knowledge is of particular importance in, amongst others, elite sport. Can dried blood spots serve as a minimally-invasive, low-cost, decentralized tool to monitor the quantitative antibody response and thus represent an alternative to full blood tests? › Methods: Cross-validation of dried blood and venous blood samples of 27 individuals post-infection and 96 individuals post-vaccination, longitudinal antibody monitoring of 27 individuals after vaccination using different vaccines and vaccine schedules and detection of seropositive individuals in a cohort of 557 people using self-collected DBS (dried blood spots) and two commercial immunoassays. › Findings: Plasma and DBS values were highly correlated allowing for extrapolation of plasma values from DBS using a factor of a least 10 following the presented procedure. Capillary volumetric sampling and self-sampling produced reliable results. After vaccination, participants showed heterogenous antibody responses but a consistent increase after the second dose. DBS allowed for the analysis of a huge sample volume in a timely manner by limited laboratory personnel. › Discussion: DBS offer the possibility of infection and vaccination traceability of individuals and cohorts via minimally-invasive self-sampling. This way, they allow to screen and monitor the presence and evolution of anti-SARS-CoV-2 antibodies in a qualitative and quantitative manner. Using two commercial, automated assays enables large-scale and frequent testing, global implementation and comparability of results. © 2022, Dynamic Media Sales Verlag. All rights reserved.

8.
Clin Biochem ; 2022 Jan 03.
Article in English | MEDLINE | ID: covidwho-1588086

ABSTRACT

INTRODUCTION: Dried blood spot (DBS) sampling is a minimally invasive method for specimen collection with potential multifaceted uses, particularly for serosurveillance of previous SARS-CoV-2 infection. In this study, we assessed DBS as a potential specimen type for assessing IgG and total (including IgG and IgM) antibodies to SARS-CoV-2 in vaccinated and naturally infected patients. METHODS: Six candidate buffers were assessed for eluting blood from DBS cards. The study utilized one hundred and five paired plasma specimens and DBS specimens from prospectively collected SARS-CoV-2 vaccinated individuals, remnants from those with PCR confirmed SARS-CoV-2 infections, or remnants from those without history of infection or vaccination. All specimens were tested with the Siemens SARS-CoV-2 total assay (COV2T) or IgG assay (sCOVG). RESULTS: The lowest backgrounds were observed with water and PBS, and water was used for elution. Relative to plasma samples, DBS samples had a positive percent agreement (PPA) of 94.4% (95% CI: 94.9-100%) for COV2T and 79.2 (68.4-87.0) for sCOVG using the manufacturer's cutoff. The NPA was 100 % (87.1-100.0 and 85.13-100) for both assays. Dilution studies revealed 100% (95% CI: 90.8-100%) qualitative agreement between specimen types on the COV2T assay and 98.0% (88.0-99.9%) with the sCOVG using study defined cutoffs. CONCLUSION: DBS specimens demonstrated high PPA and NPA relative to plasma for SARS-CoV-2 serological testing. Our data support feasibility of DBS sampling for SARS-CoV-2 serological testing.

10.
Parkinsonism Relat Disord ; 92: 41-45, 2021 11.
Article in English | MEDLINE | ID: covidwho-1472127

ABSTRACT

BACKGROUND: The initial COVID-19 pandemic shutdown led to the canceling of elective surgeries throughout most of the USA and Canada. OBJECTIVE: This survey was carried out on behalf of the Parkinson Study Group (PSG) to understand the impact of the shutdown on deep brain stimulation (DBS) practices in North America. METHODS: A survey was distributed through RedCap® to the members of the PSG Functional Neurosurgical Working Group. Only one member from each site was asked to respond to the survey. Responses were collected from May 15 to June 6, 2020. RESULTS: Twenty-three sites participated; 19 (83%) sites were from the USA and 4 (17%) from Canada. Twenty-one sites were academic medical centers. COVID-19 associated DBS restrictions were in place from 4 to 16 weeks. One-third of sites halted preoperative evaluations, while two-thirds of the sites offered limited preoperative evaluations. Institutional policy was the main contributor for the reported practice changes, with 87% of the sites additionally reporting patient-driven surgical delays secondary to pandemic concerns. Pre-post DBS associated management changes affected preoperative assessments 96%; electrode placement 87%; new implantable pulse generator (IPG) placement 83%; IPG replacement 65%; immediate postoperative DBS programming 74%; and routine DBS programming 91%. CONCLUSION: The COVID-19 pandemic related shutdown resulted in DBS practice changes in almost all North American sites who responded to this large survey. Information learned could inform development of future contingency plans to reduce patient delays in care under similar circumstances.


Subject(s)
COVID-19/prevention & control , Deep Brain Stimulation/statistics & numerical data , Implantable Neurostimulators/statistics & numerical data , Movement Disorders/therapy , Parkinson Disease/therapy , Postoperative Care/statistics & numerical data , Preoperative Care/statistics & numerical data , Quarantine/statistics & numerical data , Telemedicine/statistics & numerical data , Academic Medical Centers , Canada , Health Care Surveys , Humans , Neurologists/statistics & numerical data , Neurosurgeons/statistics & numerical data , United States
11.
EBioMedicine ; 70: 103502, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1330765

ABSTRACT

BACKGROUND: Since 2020 SARS-CoV-2 spreads pandemically, infecting more than 119 million people, causing >2·6 million fatalities. Symptoms of SARS-CoV-2 infection vary greatly, ranging from asymptomatic to fatal. Different populations react differently to the disease, making it very hard to track the spread of the infection in a population. Measuring specific anti-SARS-CoV-2 antibodies is an important tool to assess the spread of the infection or successful vaccinations. To achieve sufficient sample numbers, alternatives to venous blood sampling are needed not requiring medical personnel or cold-chains. Dried-blood-spots (DBS) on filter-cards have been used for different studies, but not routinely for serology. METHODS: We developed a semi-automated protocol using self-sampled DBS for SARS-CoV-2 serology. It was validated in a cohort of matched DBS and venous-blood samples (n = 1710). Feasibility is demonstrated with two large serosurveys with 10247 company employees and a population cohort of 4465 participants. FINDINGS: Sensitivity and specificity reached 99·20% and 98·65%, respectively. Providing written instructions and video tutorials, 99·87% (4465/4471) of the unsupervised home sampling DBS cards could be analysed. INTERPRETATION: DBS-sampling is a valid and highly reliable tool for large scale serosurveys. We demonstrate feasibility and accuracy with a large validation cohort including unsupervised home sampling. This protocol might be of big importance for surveillance in resource-limited settings, providing low-cost highly accurate serology data. FUNDING: Provided by Bavarian State Ministry of Science and the Arts, LMU University-Hospital; Helmholtz-Centre-Munich, German Ministry for Education and Research (project01KI20271); University of Bonn; University of Bielefeld; the Medical Biodefense Research Program of Bundeswehr-Medical-Service; Euroimmun, RocheDiagnostics provided discounted kits and machines.


Subject(s)
Antibodies, Viral/immunology , Biological Assay/methods , COVID-19 Serological Testing/methods , COVID-19/blood , COVID-19/immunology , Dried Blood Spot Testing/methods , SARS-CoV-2/immunology , Asymptomatic Infections , Cohort Studies , Humans , Longitudinal Studies , Sensitivity and Specificity , Specimen Handling/methods , Vaccination/methods
12.
Parkinsonism Relat Disord ; 89: 199-205, 2021 08.
Article in English | MEDLINE | ID: covidwho-1300965

ABSTRACT

The use of telemedicine in the management of chronic neurological conditions including movement disorders has expanded over time. In addition to enabling remote access to specialized care, telemedicine has also been shown to reduce caregiver burden and to improve patient satisfaction. With the COVID-19 pandemic, implementation of telehealth for patients with movement disorders, particularly those with more severe mobility issues, has increased rapidly. Although telemedicine care has been shown to be effective for patients with various movement disorders, its utilization for patients with device aided therapies such as deep brain stimulation (DBS) is limited due to challenges related to adjusting these devices remotely and to the lack of consensus recommendations for using telemedicine in this patient population. Thus, guidelines for telemedicine and DBS will assist clinicians on the appropriate implementation of telemedicine to provide care to DBS patients. Optimizing the use of telemedicine for DBS will expand this type of therapy to remote locations with limited access to programming expertise, and also reduce the need for patient travel. Telemedicine is particularly important during the ongoing pandemic due to infection risk and limited access to clinic visits. In this article we review the currently available and emerging strategies for telemedicine and remote care for DBS. We then outline common principles and recommendations for telemedicine care in patients with DBS, review patient selection and best practices. Finally, we briefly discuss the current state of reimbursement for DBS telemedicine visits.


Subject(s)
Deep Brain Stimulation/trends , Telemedicine/trends , COVID-19 , Deep Brain Stimulation/standards , Humans , Pandemics , Remote Consultation , Telemedicine/standards
13.
Drug Test Anal ; 13(7): 1238-1248, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1258052

ABSTRACT

The outbreak of the new coronavirus disease changed the world upside down. Every day, millions of people were subjected to diagnostic testing for Covid-19, all over the world. Molecular tests helped in the diagnosis of current infection by detecting the presence of viral genome whereas serological tests helped in detecting the presence of antibody in blood as well as contributed to vaccine development. This testing helped in understanding the immunogenicity, community prevalence, geographical spread and conditions post-infection. However, with the contagious nature of the virus, biological specimen sampling involved the risk of transmission and spread of infection. Clinic or pathology visit was the most concerning part. Trained personnel and resources was another barrier. In this scenario, microsampling played an important role due to its most important advantage of remote, contactless, small volume and self-sampling. Minimum requirements for sample storage and ease of shipment added value in this situation. The highly sensitive instruments and validated assay formats assured the accuracy of results and stability of samples. Microsampling techniques are contributing effectively to the Covid-19 pandemic by reducing the demand for clinical staff in population-level testing. The validated and established applications supported the use of microsampling in diagnosis, therapeutic drug monitoring, development of treatment or vaccines and clinical trials for Covid-19.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Specimen Handling , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19 Vaccines/therapeutic use , Clinical Trials as Topic , Drug Monitoring , Humans , Population Surveillance , Predictive Value of Tests
14.
Clin Neuropsychol ; 36(1): 72-84, 2022 01.
Article in English | MEDLINE | ID: covidwho-1242081

ABSTRACT

ObjectiveNeuropsychological assessment is integral to the pre-surgical deep brain stimulation (DBS) workup for patients with movement disorders. The COVID-19 pandemic quickly affected care access and shifted healthcare delivery, and neuropsychology has adapted successfully to provide tele-neuropsychological (teleNP) DBS evaluations during this time, thus permanently changing the landscape of neuropsychological practice. Method: In this paper, we discuss the lessons learned from the pandemic and we offer care management guidelines for teleNP and in-person evaluations of pre-DBS populations, with exploration of the feasibility of the different approaches for uninterrupted care access. Results: We summarize the strengths and weaknesses of these care models and we provide future directions for the state of clinical neuropsychological practice for DBS programs, with implications for broader patient populations. Conclusions: A better understanding of these dynamics will inform and educate the DBS team and community regarding the complexities of performing DBS neuropsychological evaluations during COVID-19 and beyond.


Subject(s)
COVID-19 , Deep Brain Stimulation , Telemedicine , Humans , Neuropsychological Tests , Pandemics , SARS-CoV-2
15.
Mol Genet Metab Rep ; 27: 100759, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1202020

ABSTRACT

BACKGROUND: COVID19 pandemic urged the need to take severe measures for reducing the epidemic spread. Lockdowns were imposed throughout countries and even Inborn errors of metabolism (IEMs) affected patients had to face it and adapt, with management strategies changes coming along. Phenylketonuria (PKU) is an inborn error of phenylalanine (Phe) metabolism causing, when not treated, blood Phe increases and consequent central nervous system (CNS) damage. Dietary intervention is the main recognized treatment and must be maintained long-life, however adherence is often suboptimal in adulthood. Aim of this study was to evaluate whether and how the pandemic had impacted PKUs metabolic control and what factors may have played a role as potential modifiers. METHODS: Patients ≥4 yo and in follow-up at our Metabolic Clinic were enrolled in this study, divided into subgroups according to age (GROUP A < 12 yo; GROUP B ≥ 12 yo). Videoconsults were conducted on a minimum monthly basis and collected DBS were studied and compared to previous year same time-period in order to evaluate possible changes. RESULTS: 39% of patients (n = 121) increased the number of performed DBS. "Non-compliant" patients were reduced (11-3%) with a - 14% of patients with mean Phe levels >600 umol/l and a - 8% of patients with 100% DBS above same level. GROUP A maintained substantially unchanged metabolic control among two analyzed time-periods. On the contrary, GROUP B demonstrated significant reductions in mean blood Phe concentrations (p < 0.0001) during the pandemic (mean 454 umol/l, SD ± 252, vs. 556.4 umol/l, SD ± 301). DISCUSSION: COVID19 pandemic strongly impacted people's life with lifestyle habits changing consistently. PKU patients had to adapt their dietary restrictions to the new environment they were exposed to and, if younger patients could have been less exposed (meals strictly according to diet plan independently from setting), adolescent and adults strongly reflected the obligation to stay home by showing better metabolic control. Multiple factors could have played a role in that and the availability of teleconsultancy may have contributed allowing easier connections, but our data demonstrate how the pandemic and the environment can strongly impact PKUs adherence to treatment and how removing distance barriers can ameliorate and optimize metabolic compliance.

16.
Front Hum Neurosci ; 15: 644593, 2021.
Article in English | MEDLINE | ID: covidwho-1194590

ABSTRACT

We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer's disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.

17.
Anal Sci Adv ; 2(9-10): 440-446, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1151850

ABSTRACT

Serological test methods to detect anti-SARS-CoV-2 antibodies represent a major measure to manage the pandemic caused by the coronavirus disease 2019 (COVID-19). In this communication, test results obtained from minimal-invasively collected dried blood spot (DBS) specimens, which can be sampled 'at home' without the need of medically trained personnel, are compared to conventionally collected venous blood samples. DBS samples were prepared for analysis either manually or by a card extraction robot, and electrochemiluminescence assay (ECLIA) characteristics, assay readout values as well as stability data covering a period of more than 200 days are provided. Constant anti-SARS-CoV-2 antibody readouts of quality control DBS were obtained over the entire test period using DBS specimens stored under dry and dark conditions. In addition, test results obtained from individuals tested twice within 10 months post-infection indicated a consistent presence of antibodies.

18.
Bioanalysis ; 13(1): 13-28, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-977787

ABSTRACT

Aim: Coronavirus disease 2019 antibody testing often relies on venous blood collection, which is labor-intensive, inconvenient and expensive compared with finger-stick capillary dried blood spot (DBS) collection. The purpose of our work was to determine if two commercially available anti-severe acute respiratory syndrome coronavirus 2 enzyme-linked immunosorbent assays for IgG antibodies against spike S1 subunit and nucleocapsid proteins could be validated for use with DBS. Materials & methods: Kit supplied reagents were used to extract DBS, and in-house DBS calibrators were included on every run. Results: Positive/negative concordance between DBS and serum was 100/99.3% for the spike S1 subunit assay and 100/98% for the nucleocapsid assay. Conclusion: Validation of the DBS Coronavirus disease 2019 IgG antibody assays demonstrated that serum and DBS can produce equivalent results with minimal kit modifications.


Subject(s)
COVID-19 Testing/standards , COVID-19/diagnosis , Dried Blood Spot Testing/standards , Enzyme-Linked Immunosorbent Assay/standards , SARS-CoV-2/immunology , Antibodies, Viral/chemistry , Antigens, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/blood , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/chemistry , Male , Middle Aged , Phosphoproteins/blood , Phosphoproteins/immunology , Reagent Kits, Diagnostic/standards , Reproducibility of Results , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology
19.
J Neurol ; 268(4): 1295-1303, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-891907

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) is an effective treatment for patients with Parkinson's disease (PD). On time follow-up and timely programing of symptoms are important measures to maintain the effectiveness of DBS. Due to the highly contagious nature of 2019-nCoV, patients were quarantined. With the help of Internet technologies, we continued to provide motor and non-motor symptom assessment and remote programming services for postsurgical PD-DBS patients during this extraordinary period. METHODS: A retrospective analysis was performed on postsurgical PD-DBS patients who could not come to our hospital for programming due to the impact of the 2019-nCoV. The differences between the pre- and post-programming groups were analyzed. We designed a 5-level Likert rating scale to evaluate the effects and convenience of the remote programming and Internet self-evaluation procedures. RESULTS: Of the 36 patients engaged in the remote programming, 32 patients met the inclusion criteria. Four of the 32 patients set initiated stimulation parameters, and the other 28 patients had significant improvement in UPDRS-III. Nearly all the 28 patients were satisfied with the effect of the remote programming. Most of the patients were willing to use remote programming again. CONCLUSION: Remote programming based on the online evaluation of patient's symptoms can help improve motor symptoms of postsurgical DBS patients with PD during the quarantine period caused by 2019-nCoV.


Subject(s)
COVID-19 , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Telemedicine/methods , Aged , Female , Humans , Male , Middle Aged , Quarantine , Retrospective Studies , SARS-CoV-2
20.
Emerg Infect Dis ; 26(12): 2970-2973, 2020 12.
Article in English | MEDLINE | ID: covidwho-792953

ABSTRACT

Dried blood spot (DBS) samples can be used for the detection of severe acute respiratory syndrome coronavirus 2 spike antibodies. DBS sampling is comparable to matched serum samples with a relative 98.1% sensitivity and 100% specificity. Thus, DBS sampling offers an alternative for population-wide serologic testing in the coronavirus pandemic.


Subject(s)
COVID-19/diagnosis , Dried Blood Spot Testing/methods , Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Case-Control Studies , Dried Blood Spot Testing/economics , Humans , Predictive Value of Tests , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL