ABSTRACT
COVID-19 is an infectious disease caused by the SARS-CoV-2 coronavirus and characterized by an extremely variable disease course, ranging from asymptomatic cases to severe illness. Although all individuals may be infected by SARS-CoV-2, some people, including those of older age and/or with certain health conditions, including cardiovascular disease, diabetes, cancer, and chronic respiratory disease, are at higher risk of getting seriously ill. For cancer patients, there are both direct consequences of the COVID-19 pandemic, including that they are more likely to be infected by SARS-CoV-2 and more prone to develop severe complications, as well as indirect effects, such as delayed cancer diagnosis or treatment and deferred tests. Accumulating data suggest that aberrant SARS-CoV-2 immune response can be attributed to impaired interferon signaling, hyper-inflammation, and delayed adaptive immune responses. Interestingly, the SARS-CoV-2-induced immunological abnormalities, DNA damage induction, generation of micronuclei, and the virus-induced telomere shortening can abnormally activate the DNA damage response (DDR) network that plays a critical role in genome diversity and stability. We present a review of the current literature regarding the molecular mechanisms that are implicated in the abnormal interplay of the immune system and the DDR network, possibly contributing to some of the COVID-19 complications.
ABSTRACT
DNA damage response (DDR) is an evolutionarily conserved mechanism by which eukaryotic cells sense DNA lesions caused by intrinsic and extrinsic stimuli, including virus infection. Although interactions between DNA viruses and DDR have been extensively studied, how RNA viruses, especially coronaviruses, regulate DDR remains unknown. A previous study showed that the porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the Coronaviridae family, induces DDR in infected cells. However, the underlying mechanism was unclear. This study showed that PEDV activates the ATM-Chk2 signaling, while inhibition of ATM or Chk2 dampens the early stage of PEDV infection. Additionally, we found that PEDV-activated ATM signaling correlates with intracellular ROS production. Interestingly, we showed that, unlike the typical γH2AX foci, PEDV infection leads to a unique γH2AX staining pattern, including phase I (nuclear ring staining), II (pan-nuclear staining), and III (co-staining with apoptotic bodies), which highly resembles the apoptosis process. Furthermore, we demonstrated that PEDV-induced H2AX phosphorylation depends on the activation of caspase-7 and caspase-activated DNAse (CAD), but not ATM-Chk2. Finally, we showed that the knockdown of H2AX attenuates PEDV replication. Taken together, we conclude that PEDV induces DDR through the ROS-ATM and caspase7-CAD-γH2AX signaling pathways to foster its early replication.
Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Coronavirus Infections/veterinary , Deoxyribonucleases , Phosphorylation , Porcine epidemic diarrhea virus/genetics , Reactive Oxygen Species , Signal Transduction , SwineABSTRACT
DNA damage and genome instability in host cells are introduced by many viruses during their life cycles. Severe acute respiratory syndrome coronaviruses (SARS-CoVs) manipulation of DNA damage response (DDR) is an important area of research that is still understudied. Elucidation of the direct and indirect interactions between SARS-CoVs and DDR not only provides important insights into how the viruses exploit DDR pathways in host cells but also contributes to our understanding of their pathogenicity. Here, we present the known interactions of both SARS-CoV and SARS-CoV-2 with DDR pathways of the host cells, to further understand the consequences of infection on genome integrity. Since this area of research is in its early stages, we try to connect the unlinked dots to speculate and propose different consequences on DDR mechanisms. This review provides new research scopes that can be further investigated in vitro and in vivo, opening new avenues for the development of anti-SARS-CoV-2 drugs.
ABSTRACT
Immune senescence in the elderly has been associated with chronic oxidative stress and DNA damage accumulation. Herein we tested the hypothesis that increased endogenous DNA damage and oxidative stress in peripheral blood mononuclear cells of older adults associate with diminished humoral immune response to SARS-CoV-2 vaccination. Increased oxidative stress and DNA double-strand breaks (DSBs) were detected in 9 non-immunocompromised individuals aged 80-96 years compared to 11 adults aged 27-44 years, before, as well as on days 1 and 14 after the first dose, and on day 14 after the second dose of the BNT162B2-mRNA vaccine (all p < 0.05). SARS-CoV-2 vaccination induced a resolvable increase in oxidative stress and DNA damage, but individual DSB-repair efficiency was unaffected by vaccination irrespective of age, confirming vaccination safety. Individual titers of anti-Spike-Receptor Binding Domain (S-RBD)-IgG antibodies, and the neutralizing capacity of circulating anti-SARS-CoV-2 antibodies, measured on day 14 after the second dose in all participants, correlated inversely with the corresponding pre-vaccination endogenous oxidative stress and DSB levels (all p < 0.05). In particular, a strong inverse correlation of individual pre-vaccination DSB levels with both the respective anti-S-RBD-IgG antibodies titers (r = -0.867) and neutralizing capacity of circulating anti-SARS-CoV-2 antibodies (r = -0.983) among the 9 older adults was evident. These findings suggest that humoral responses to SARS-CoV-2 vaccination may be weaker when immune cells are under oxidative and/or genomic stress. Whether such measurements may serve as biomarkers of vaccine efficacy in older adults warrants further studies.
Subject(s)
BNT162 Vaccine , COVID-19 , Adult , Aged , Aged, 80 and over , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , DNA Damage , Humans , Leukocytes, Mononuclear , Oxidative Stress , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA VaccinesABSTRACT
Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis, exploring the mechanisms mediating and preventing pulmonary fibrogenic crisis. Notably, the TGF-ß signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis. Abbreviations: DPS, developmental programmed senescence; IPF, idiopathic pulmonary fibrosis; OIS, oncogene-induced replicative senescence; SADD, senescence-associated differentiation disorder; SALI, senescence-associated low-grade inflammation; SIPS, stress-induced premature senescence; TERC, telomerase RNA component; TERT, telomerase reverse transcriptase; TIFs, telomere dysfunction-induced foci; TIS, therapy-induced senescence; VIS, virus-induced senescence.
Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Telomerase , Cellular Senescence , Humans , SARS-CoV-2 , Stem Cells/metabolism , Telomerase/metabolismABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), known to be more common in the elderly, who also show more severe symptoms and are at higher risk of hospitalization and death. Here, we show that the expression of the angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 cell receptor, increases during aging in mouse and human lungs. ACE2 expression increases upon telomere shortening or dysfunction in both cultured mammalian cells and in vivo in mice. This increase is controlled at the transcriptional level, and Ace2 promoter activity is DNA damage response (DDR)-dependent. Both pharmacological global DDR inhibition of ATM kinase activity and selective telomeric DDR inhibition by the use of antisense oligonucleotides prevent Ace2 upregulation following telomere damage in cultured cells and in mice. We propose that during aging telomere dysfunction due to telomeric shortening or damage triggers DDR activation and this causes the upregulation of ACE2, the SARS-CoV-2 cell receptor, thus contributing to make the elderly more susceptible to the infection.
Subject(s)
Aging , Angiotensin-Converting Enzyme 2/genetics , COVID-19 , DNA Damage , Telomere , Aged , Aging/genetics , Animals , Humans , Mice , SARS-CoV-2 , Telomere/geneticsABSTRACT
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for the current COVID-19 pandemic and has now infected more than 200 million people with more than 4 million deaths globally. Recent data suggest that symptoms and general malaise may continue long after the infection has ended in recovered patients, suggesting that SARS-CoV-2 infection has profound consequences in the host cells. Here we report that SARS-CoV-2 infection can trigger a DNA damage response (DDR) in African green monkey kidney cells (Vero E6). We observed a transcriptional upregulation of the Ataxia telangiectasia and Rad3 related protein (ATR) in infected cells. In addition, we observed enhanced phosphorylation of CHK1, a downstream effector of the ATR DNA damage response, as well as H2AX. Strikingly, SARS-CoV-2 infection lowered the expression of TRF2 shelterin-protein complex, and reduced telomere lengths in infected Vero E6 cells. Thus, our observations suggest SARS-CoV-2 may have pathological consequences to host cells beyond evoking an immunopathogenic immune response.
Subject(s)
COVID-19/genetics , DNA Damage , Host-Pathogen Interactions/genetics , SARS-CoV-2/pathogenicity , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Checkpoint Kinase 1/metabolism , Chlorocebus aethiops , Histones/genetics , Phosphorylation , Telomere , Vero CellsABSTRACT
Whether and how an acute immune challenge may affect DNA Damage Response (DDR) is unknown. By studying vaccinations against Influenza and SARS-CoV-2 (mRNA-based) we found acute increases of type-I interferon-inducible gene expression, oxidative stress and DNA damage accumulation in blood mononuclear cells of 9 healthy controls, coupled with effective anti-SARS-CoV-2 neutralizing antibody production in all. Increased DNA damage after SARS-CoV-2 vaccine, partly due to increased oxidative stress, was transient, whereas the inherent DNA repair capacity was found intact. In contrast, in 26 patients with Systemic Lupus Erythematosus, who served as controls in the context of chronic immune activation, we validated increased DNA damage accumulation, increased type-I interferon-inducible gene expression and induction of oxidative stress, however aberrant DDR was associated with deficiencies in nucleotide excision repair pathways. These results indicate that acute immune challenge can indeed activate DDR pathways, whereas, contrary to chronic immune challenge, successful repair of DNA lesions occurs.
Subject(s)
Antibodies, Neutralizing/physiology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , DNA Damage , Lupus Erythematosus, Systemic/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , COVID-19/pathology , Case-Control Studies , Female , Gene Expression Regulation/immunology , Humans , Interferon Type I/metabolism , Male , Middle Aged , Oxidative Stress , Vaccines, Synthetic/immunology , Young AdultABSTRACT
SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.