Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Multimed Tools Appl ; : 1-23, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35991584

ABSTRACT

Medical Resonance Imaging (MRI) is one of the preferred imaging methods for brain tumor diagnosis and getting detailed information on tumor type, location, size, identification, and detection. Segmentation divides an image into multiple segments and describes the separation of the suspicious region from pre-processed MRI images to make the simpler image that is more meaningful and easier to examine. There are many segmentation methods, embedded with detection devices, and the response of each method is different. The study article focuses on comparing the performance of several image segmentation algorithms for brain tumor diagnosis, such as Otsu's, watershed, level set, K-means, HAAR Discrete Wavelet Transform (DWT), and Convolutional Neural Network (CNN). All of the techniques are simulated in MATLAB using online images from the Brain Tumor Image Segmentation Benchmark (BRATS) dataset-2018. The performance of these methods is analyzed based on response time and measures such as recall, precision, F-measures, and accuracy. The measured accuracy of Otsu's, watershed, level set, K-means, DWT, and CNN methods is 71.42%, 78.26%, 80.45%, 84.34%, 86.95%, and 91.39 respectively. The response time of CNN is 2.519 s in the MATLAB simulation environment for the designed algorithm. The novelty of the work is that CNN has been proven the best algorithm in comparison to all other methods for brain tumor image segmentation. The simulated and estimated parameters provide the direction to researchers to choose the specific algorithm for embedded hardware solutions and develop the optimal machine-learning models, as the industries are looking for the optimal solutions of CNN and deep learning-based hardware models for the brain tumor.

2.
Int J Neural Syst ; 32(9): 2250042, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35946945

ABSTRACT

Dementia is one of the most common neurological disorders causing defection of cognitive functions, and seriously affects the quality of life. In this study, various methods have been proposed for the detection and follow-up of Alzheimer's dementia (AD) with advanced signal processing methods by using electroencephalography (EEG) signals. Signal decomposition-based approaches such as empirical mode decomposition (EMD), ensemble EMD (EEMD), and discrete wavelet transform (DWT) are presented to classify EEG segments of control subjects (CSs) and AD patients. Intrinsic mode functions (IMFs) are obtained from the signals using the EMD and EEMD methods, and the IMFs showing the most significant differences between the two groups are selected by applying previously suggested selection procedures. Five-time-domain and 5-spectral-domain features are calculated using selected IMFs, and five detail and approximation coefficients of DWT. Signal decomposition processes are conducted for both 1 min and 5 s EEG segment durations. For the 1 min segment duration, all the proposed approaches yield prominent classification performances. While the highest classification accuracies are obtained using EMD (91.8%) and EEMD (94.1%) approaches from the temporal/right brain cluster, the highest classification accuracy for the DWT (95.2%) approach is obtained from the temporal/left brain cluster for 1 min segment duration.


Subject(s)
Alzheimer Disease , Algorithms , Alzheimer Disease/diagnosis , Electroencephalography/methods , Humans , Machine Learning , Quality of Life , Signal Processing, Computer-Assisted
3.
Appl Soft Comput ; 128: 109401, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35919069

ABSTRACT

The quick diagnosis of the novel coronavirus (COVID-19) disease is vital to prevent its propagation and improve therapeutic outcomes. Computed tomography (CT) is believed to be an effective tool for diagnosing COVID-19, however, the CT scan contains hundreds of slices that are complex to be analyzed and could cause delays in diagnosis. Artificial intelligence (AI) especially deep learning (DL), could facilitate and speed up COVID-19 diagnosis from such scans. Several studies employed DL approaches based on 2D CT images from a single view, nevertheless, 3D multiview CT slices demonstrated an excellent ability to enhance the efficiency of COVID-19 diagnosis. The majority of DL-based studies utilized the spatial information of the original CT images to train their models, though, using spectral-temporal information could improve the detection of COVID-19. This article proposes a DL-based pipeline called CoviWavNet for the automatic diagnosis of COVID-19. CoviWavNet uses a 3D multiview dataset called OMNIAHCOV. Initially, it analyzes the CT slices using multilevel discrete wavelet decomposition (DWT) and then uses the heatmaps of the approximation levels to train three ResNet CNN models. These ResNets use the spectral-temporal information of such images to perform classification. Subsequently, it investigates whether the combination of spatial information with spectral-temporal information could improve the diagnostic accuracy of COVID-19. For this purpose, it extracts deep spectral-temporal features from such ResNets using transfer learning and integrates them with deep spatial features extracted from the same ResNets trained with the original CT slices. Then, it utilizes a feature selection step to reduce the dimension of such integrated features and use them as inputs to three support vector machine (SVM) classifiers. To further validate the performance of CoviWavNet, a publicly available benchmark dataset called SARS-COV-2-CT-Scan is employed. The results of CoviWavNet have demonstrated that using the spectral-temporal information of the DWT heatmap images to train the ResNets is superior to utilizing the spatial information of the original CT images. Furthermore, integrating deep spectral-temporal features with deep spatial features has enhanced the classification accuracy of the three SVM classifiers reaching a final accuracy of 99.33% and 99.7% for the OMNIAHCOV and SARS-COV-2-CT-Scan datasets respectively. These accuracies verify the outstanding performance of CoviWavNet compared to other related studies. Thus, CoviWavNet can help radiologists in the rapid and accurate diagnosis of COVID-19 diagnosis.

4.
Vis Comput ; : 1-21, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35791414

ABSTRACT

Digital watermarking has attracted increasing attentions as it has been the current solution to copyright protection and content authentication in today's digital transformation, which has become an issue to be addressed in multimedia technology. In this paper, we propose an advanced image watermarking system based on the discrete wavelet transform (DWT) in combination with the singular value decomposition (SVD). Firstly, at the sender side, DWT is applied on a grayscale cover image and then eigendecomposition is performed on original HH (high-high) components. Similar operation is done on a grayscale watermark image. Then, two unitary and one diagonal matrices are combined to form a digital watermarked image applying inverse discrete wavelet transform (iDWT). The diagonal component of original image is transmitted through secured channel. At the receiver end, the watermark image is recovered using the watermarked image and diagonal component of the original image. Finally, we compare the original and recovered watermark image and obtained perfect normalized correlation. Simulation consequences indicate that the presented scheme can satisfy the needs of visual imperceptibility and also has high security and strong robustness against many common attacks and signal processing operations. The proposed digital image watermarking system is also compared to state-of-the-art methods to confirm the reliability and supremacy.

5.
Entropy (Basel) ; 24(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35741468

ABSTRACT

In this study, a method based on the discrete wavelet transform (DWT) and azimuth-scale expansion is presented to retrieve the sea-surface wind direction from a single X-band marine radar image. The algorithm first distinguishes rain-free and rain-contaminated radar images based on the occlusion zero-pixel percentage and then discards the rain-contaminated images. The radar image whose occlusion areas have been removed is decomposed into different low-frequency sub-images by the 2D DWT, and the appropriate low-frequency sub-image is selected. Images collected with a standard marine HH-polarized X-band radar operating at grazing incidence display a single intensity peak in the upwind direction. To overcome the influence of the occlusion area, before determining the wind direction, the data near the ship bow are shifted to expand the azimuth scale of the data. Finally, a harmonic function is least-square-fitted to the range-averaged radar return of the low-frequency sub-image as a function of the antenna look azimuth to determine the wind direction. Different from the wind-direction retrieval algorithms previously presented, this method is more suitable for sailing ships, as it functions well even if the radar data are heavily blocked. The results show that compared with the single-curve fitting algorithm, the algorithm based on DWT and azimuth-scale expansion can improve the wind-direction results in sailing ships, showing a reduction of 7.84° in the root-mean-square error with respect to the reference.

6.
J Imaging ; 8(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35324624

ABSTRACT

The importance and relevance of digital-image forensics has attracted researchers to establish different techniques for creating and detecting forgeries. The core category in passive image forgery is copy-move image forgery that affects the originality of image by applying a different transformation. In this paper, a frequency-domain image-manipulation method is presented. The method exploits the localized nature of discrete wavelet transform (DWT) to attain the region of the host image to be manipulated. Both patch and host image are subjected to DWT at the same level l to obtain 3l+1 sub-bands, and each sub-band of the patch is pasted to the identified region in the corresponding sub-band of the host image. Resulting manipulated host sub-bands are then subjected to inverse DWT to obtain the final manipulated host image. The proposed method shows good resistance against detection by two frequency-domain forgery detection methods from the literature. The purpose of this research work is to create a forgery and highlight the need to produce forgery detection methods that are robust against malicious copy-move forgery.

7.
Vis Comput ; : 1-16, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35125576

ABSTRACT

To protect the medical images integrity, digital watermark is embedded into the medical images. A non-blind medical image watermarking scheme based on hybrid transform is propounded. In this paper, fingerprint of the patient is used as watermark for better authentication, identifying the original medical image and privacy of the patients. In this scheme, lifting wavelet transform (LWT) and discrete wavelet transform (DWT) are utilized for amplifying the watermarking algorithm. The scaling and embedding factors are calculated adaptively with the help of Local Binary Pattern values of the host medical image to achieve better imperceptibility and robustness for medical images and fingerprint watermark, respectively. Two-level decomposition is done where for the first level LWT is utilized and for the second level decomposition DWT is utilized. At the extraction side, non-blind recovery of fingerprint watermark is performed which is similar to the embedding process. The propounded design is implemented on various medical images like Chest X-ray, CT scan and so on. The propounded design provides better imperceptibility and robustness with the combination of LWT-DWT. The result analysis proves that the proposed fingerprint watermarking scheme has attained best results in terms of robustness and authentication with different medical image attacks. Peak Signal to Noise Ratio and Normalized Correlation Coefficient metrics are used for evaluating the proposed scheme. Furthermore, superior results are obtained when compared to related medical image watermarking schemes.

8.
Comput Biol Med ; 142: 105210, 2022 03.
Article in English | MEDLINE | ID: mdl-35026574

ABSTRACT

The accurate and speedy detection of COVID-19 is essential to avert the fast propagation of the virus, alleviate lockdown constraints and diminish the burden on health organizations. Currently, the methods used to diagnose COVID-19 have several limitations, thus new techniques need to be investigated to improve the diagnosis and overcome these limitations. Taking into consideration the great benefits of electrocardiogram (ECG) applications, this paper proposes a new pipeline called ECG-BiCoNet to investigate the potential of using ECG data for diagnosing COVID-19. ECG-BiCoNet employs five deep learning models of distinct structural design. ECG-BiCoNet extracts two levels of features from two different layers of each deep learning technique. Features mined from higher layers are fused using discrete wavelet transform and then integrated with lower-layers features. Afterward, a feature selection approach is utilized. Finally, an ensemble classification system is built to merge predictions of three machine learning classifiers. ECG-BiCoNet accomplishes two classification categories, binary and multiclass. The results of ECG-BiCoNet present a promising COVID-19 performance with an accuracy of 98.8% and 91.73% for binary and multiclass classification categories. These results verify that ECG data may be used to diagnose COVID-19 which can help clinicians in the automatic diagnosis and overcome limitations of manual diagnosis.


Subject(s)
COVID-19 , Neural Networks, Computer , COVID-19 Testing , Communicable Disease Control , Electrocardiography , Humans , SARS-CoV-2
9.
Comput Methods Biomech Biomed Engin ; 25(7): 721-728, 2022 May.
Article in English | MEDLINE | ID: mdl-34866497

ABSTRACT

Today's fast paced life reports so much stress among people that it may lead to various psychological and physical illnesses. Yoga and meditation are the best strategies to reduce the effect of stress on physical and mental level without any side-effects. In this study, combined yoga and Sudarshan Kriya (SK) has been used as an alternative and complementary therapy for the management of stress. The aim of the study is to find a method to classify the meditator and non-meditator states with the best accuracy. The 50 subjects have been participating in this study and divided into two groups, i.e. study and control group. The subjects with regular practice of Yoga and SK are known as meditators and the ones without any practice of yoga and meditation were known as non-meditators. Electroencephalogram (EEG) signals were acquired from these both groups before and after 3 months. The statistical parameters were computed from these acquired EEG signals using Discrete Wavelet Transform (DWT). These extracted statistical parameters were given as input to the classifiers. The decision tree, discriminant analysis, logistic regression, Support Vector Machine (SVM), Weighted K- Nearest Neighbour (KNN) and ensemble classifiers were used for classification of meditator and non- meditator states from the acquired EEG signals. The results have demonstrated that the SVM method gives the highest classification accuracy as compared to other classifiers. The proposed method can be used as a diagnosis system in clinical practices.


Subject(s)
Meditation , Yoga , Algorithms , Brain , Electroencephalography/methods , Humans , Machine Learning , Support Vector Machine , Wavelet Analysis
10.
Med Phys ; 48(10): 6080-6093, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34453341

ABSTRACT

PURPOSE: Ultra-Wide Band (UWB) microwave breast cancer detection is a promising new technology for routine physical examination and home monitoring. The existing microwave imaging algorithms for breast tumor detection are complex and the effect is still not ideal, due to the heterogeneity of breast tissue, skin reflection, and fibroglandular tissue reflection in backscatter signals. This study aims to develop a machine learning method to accurately locate breast tumor. METHODS: A microwave-based breast tumor localization method is proposed by time-frequency feature extraction and neural network technology. First, the received microwave array signals are converted into representative and compact features by 4-level Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). Then, the Genetic Algorithm-Neural Network (GA-NN) is developed to tune hyper-parameters of the neural network adaptively. The neural network embedded in the GA-NN algorithm is a four-layer architecture and 10-fold cross-validation is performed. Through the trained neural network, the tumor localization performance is evaluated on four datasets that are created by FDTD simulation method from 2-D MRI-derived breast models with varying tissue density, shape, and size. Each dataset consists of 1000 backscatter signals with different tumor positions, in which the ratio of training set to test set is 9:1. In order to verify the generalizability and scalability of the proposed method, the tumor localization performance is also tested on a 3-D breast model. RESULTS: For these 2-D breast models with unknown tumor locations, the evaluation results show that the proposed method has small location errors, which are 0.6076 mm, 3.0813 mm, 2.0798 mm, and 3.2988 mm, respectively, and high accuracy, which is 99%, 80%, 94%, and 85%, respectively. Furthermore, the location error and the prediction accuracy of the 3-D breast model are 3.3896 mm and 81%. CONCLUSIONS: These evaluation results demonstrate that the proposed machine learning method is effective and accurate for microwave breast tumor localization. The traditional microwave-based breast cancer detection method is to reconstruct the entire breast image to highlight the tumor. Compared with the traditional method, our proposed method can directly get the breast tumor location by applying neural network to the received microwave array signals, and circumvent any complicated image reconstruction processing.


Subject(s)
Breast Neoplasms , Microwaves , Algorithms , Breast , Breast Neoplasms/diagnostic imaging , Female , Humans , Neural Networks, Computer , Wavelet Analysis
11.
PeerJ Comput Sci ; 6: e306, 2020.
Article in English | MEDLINE | ID: mdl-33816957

ABSTRACT

The precise and rapid diagnosis of coronavirus (COVID-19) at the very primary stage helps doctors to manage patients in high workload conditions. In addition, it prevents the spread of this pandemic virus. Computer-aided diagnosis (CAD) based on artificial intelligence (AI) techniques can be used to distinguish between COVID-19 and non-COVID-19 from the computed tomography (CT) imaging. Furthermore, the CAD systems are capable of delivering an accurate faster COVID-19 diagnosis, which consequently saves time for the disease control and provides an efficient diagnosis compared to laboratory tests. In this study, a novel CAD system called FUSI-CAD based on AI techniques is proposed. Almost all the methods in the literature are based on individual convolutional neural networks (CNN). Consequently, the FUSI-CAD system is based on the fusion of multiple different CNN architectures with three handcrafted features including statistical features and textural analysis features such as discrete wavelet transform (DWT), and the grey level co-occurrence matrix (GLCM) which were not previously utilized in coronavirus diagnosis. The SARS-CoV-2 CT-scan dataset is used to test the performance of the proposed FUSI-CAD. The results show that the proposed system could accurately differentiate between COVID-19 and non-COVID-19 images, as the accuracy achieved is 99%. Additionally, the system proved to be reliable as well. This is because the sensitivity, specificity, and precision attained to 99%. In addition, the diagnostics odds ratio (DOR) is ≥ 100. Furthermore, the results are compared with recent related studies based on the same dataset. The comparison verifies the competence of the proposed FUSI-CAD over the other related CAD systems. Thus, the novel FUSI-CAD system can be employed in real diagnostic scenarios for achieving accurate testing for COVID-19 and avoiding human misdiagnosis that might exist due to human fatigue. It can also reduce the time and exertion made by the radiologists during the examination process.

12.
Diagnostics (Basel) ; 11(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672752

ABSTRACT

Medulloblastoma (MB) is a dangerous malignant pediatric brain tumor that could lead to death. It is considered the most common pediatric cancerous brain tumor. Precise and timely diagnosis of pediatric MB and its four subtypes (defined by the World Health Organization (WHO)) is essential to decide the appropriate follow-up plan and suitable treatments to prevent its progression and reduce mortality rates. Histopathology is the gold standard modality for the diagnosis of MB and its subtypes, but manual diagnosis via a pathologist is very complicated, needs excessive time, and is subjective to the pathologists' expertise and skills, which may lead to variability in the diagnosis or misdiagnosis. The main purpose of the paper is to propose a time-efficient and reliable computer-aided diagnosis (CADx), namely MB-AI-His, for the automatic diagnosis of pediatric MB and its subtypes from histopathological images. The main challenge in this work is the lack of datasets available for the diagnosis of pediatric MB and its four subtypes and the limited related work. Related studies are based on either textural analysis or deep learning (DL) feature extraction methods. These studies used individual features to perform the classification task. However, MB-AI-His combines the benefits of DL techniques and textural analysis feature extraction methods through a cascaded manner. First, it uses three DL convolutional neural networks (CNNs), including DenseNet-201, MobileNet, and ResNet-50 CNNs to extract spatial DL features. Next, it extracts time-frequency features from the spatial DL features based on the discrete wavelet transform (DWT), which is a textural analysis method. Finally, MB-AI-His fuses the three spatial-time-frequency features generated from the three CNNs and DWT using the discrete cosine transform (DCT) and principal component analysis (PCA) to produce a time-efficient CADx system. MB-AI-His merges the privileges of different CNN architectures. MB-AI-His has a binary classification level for classifying among normal and abnormal MB images, and a multi-classification level to classify among the four subtypes of MB. The results of MB-AI-His show that it is accurate and reliable for both the binary and multi-class classification levels. It is also a time-efficient system as both the PCA and DCT methods have efficiently reduced the training execution time. The performance of MB-AI-His is compared with related CADx systems, and the comparison verified the powerfulness of MB-AI-His and its outperforming results. Therefore, it can support pathologists in the accurate and reliable diagnosis of MB and its subtypes from histopathological images. It can also reduce the time and cost of the diagnosis procedure which will correspondingly lead to lower death rates.

13.
SN Comput Sci ; 2(2): 82, 2021.
Article in English | MEDLINE | ID: mdl-33585824

ABSTRACT

Digital watermarking is playing a vital role in the improvement of authentication, security, and copyright protection in today's digital transformation. The performance of this technique is shown to be impressive around the globe. Text, audio, video, and image data are acted as watermarks in the digital platform. In this article, a hybrid watermarking scheme is proposed to furnish the robustness and protection of digital data. This hybrid scheme is a form of discrete wavelet transform (DWT) and singular value decomposition (SVD). The embedding and extracting features are carried out through multi-level operations of DWT and SVD. Various attacks are added to the proposed method to justify the robustness of the watermark. In the end, the suggested approach is contrasted with existing methods to confirm the supremacy.

14.
Materials (Basel) ; 13(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218039

ABSTRACT

Carbon fiber reinforced plastics (CFRPs) have high specific stiffness and strength, but they are vulnerable to transverse loading, especially low-velocity impact loadings. The impact damage may cause serious strength reduction in CFRP structure, but the damage in a CFRP is mainly internal and microscopic, that it is barely visible. Therefore, this study proposes a method of determining impact damage in CFRP via poly(vinylidene fluoride) (PVDF) sensor, which is convenient and has high mechanical and electrical performance. In total, 114 drop impact tests were performed to investigate on impact responses and PVDF signals due to impacts. The test results were analyzed to determine the damage of specimens and signal features, which are relevant to failure mechanisms were extracted from PVDF signals by means of discrete wavelet transform (DWT). Support vector machine (SVM) was used for optimal classification of damage state, and the model using radial basis function (RBF) kernel showed the best performance. The model was validated through a 4-fold cross-validation, and the accuracy was reported to be 92.30%. In conclusion, impact damage in CFRP structures can be effectively determined using the spectral analysis and the machine learning-based classification on PVDF signals.

15.
Front Neurosci ; 14: 593, 2020.
Article in English | MEDLINE | ID: mdl-32625054

ABSTRACT

We present a multi-objective optimization method for electroencephalographic (EEG) channel selection based on the non-dominated sorting genetic algorithm (NSGA) for epileptic-seizure classification. We tested the method on EEG data of 24 patients from the CHB-MIT public dataset. The procedure starts by decomposing the EEG data from each channel into different frequency bands using the empirical mode decomposition (EMD) or the discrete wavelet transform (DWT), and then for each sub-band four features are extracted; two energy values and two fractal dimension values. The obtained feature vectors are then iteratively tested for solving two unconstrained objectives by NSGA-II or NSGA-III; to maximize classification accuracy and to reduce the number of EEG channels required for epileptic seizure classification. Our results have shown accuracies of up to 1.00 with only one EEG channel. Interestingly, when using all the EEG channels available, lower accuracies were achieved compared to the case when EEG channels were selected by NSGA-II or NSGA-III; i.e., in patient 19 we obtained an accuracy of 0.95 using all the channels and 0.975 using only two channels selected by NSGA-III. The results obtained are encouraging and it has been shown that it is possible to classify epileptic seizures using a few electrodes, which provide evidence for the future development of portable EEG seizure detection devices.

16.
Comput Biol Chem ; 87: 107310, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32599460

ABSTRACT

In this work, a framework is provided for identifying intracranial electroencephalography (iEEG) seizures based on discrete wavelet transform (DWT) analysis of iEEG signals using forward propagation and feedback neural networks. The performance of 5 different data sets combination classifications is studied using the probabilistic neural network (PNN), learning vector quantization neural network (LVQ) and Elman neural network (ENN). Different feature combinations serve as the input vectors of the classifiers to obtain the best outcomes. It has been found that PNN has less running time and provides better classification accuracy (CA) than ENN and LVQ classifiers for all 5 classification problems. It is worth noticing that the CA for the C-D classification task, which shows the status of pre-ictal versus post-ictal, has been greatly improved, and reached 83.13%. Hence, the epilepsy iEEG signals pattern recognition based on DWT statistical features using the PNN classifier is more suitable for forming a reliable, automatic classification system in order to assist doctors in diagnosis.

17.
Curr Med Imaging Rev ; 15(8): 802-809, 2019.
Article in English | MEDLINE | ID: mdl-32008548

ABSTRACT

BACKGROUND: Privacy protection has been a critical issue in the delivery of medical images for telemedicine, e-health care and other remote medical systems. OBJECTIVES: The aim of this proposed work is to implement a secure, reversible, digital watermarking technique for the transmission of medical data remotely in health care systems. METHODS: In this research work, we employed a novel optimized digital watermarking scheme using discrete wavelet transform and singular value decomposition using cuckoo search algorithm based on Lévy flight for embedding watermark into the grayscale medical images of the patient. The performance of our proposed algorithm is evaluated on four different 256 × 256 grayscale host medical images and a 32 × 32 binary logo image. RESULTS: The performance of the proposed scheme in terms of peak signal to noise ratio was remarkably high, with an average of 55.022dB compared to other methods. CONCLUSION: Experimental results reveal that the proposed method is capable of achieving superior performance compared to some of the state-of-art schemes in terms of robustness, security and high embedding capacity which is required in the field of telemedicine and e-health care system.


Subject(s)
Confidentiality , Diagnostic Imaging , Telemedicine , Wavelet Analysis , Algorithms , Diagnostic Imaging/methods , Humans
18.
Brain Sci ; 9(12)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817120

ABSTRACT

Electroencephalography (EEG) signals are frequently contaminated with unwanted electrooculographic (EOG) artifacts. Blinks and eye movements generate large amplitude peaks that corrupt EEG measurements. Independent component analysis (ICA) has been used extensively in manual and automatic methods to remove artifacts. By decomposing the signals into neural and artifactual components and artifact components can be eliminated before signal reconstruction. Unfortunately, removing entire components may result in losing important neural information present in the component and eventually may distort the spectral characteristics of the reconstructed signals. An alternative approach is to correct artifacts within the independent components instead of rejecting the entire component, for which wavelet transform based decomposition methods have been used with good results. An improved, fully automatic wavelet-based component correction method is presented for EOG artifact removal that corrects EOG components selectively, i.e., within EOG activity regions only, leaving other parts of the component untouched. In addition, the method does not rely on reference EOG channels. The results show that the proposed method outperforms other component rejection and wavelet-based EOG removal methods in its accuracy both in the time and the spectral domain. The proposed new method represents an important step towards the development of accurate, reliable and automatic EOG artifact removal methods.

19.
Genes (Basel) ; 10(12)2019 11 22.
Article in English | MEDLINE | ID: mdl-31771119

ABSTRACT

The prediction of protein-ligand binding sites is important in drug discovery and drug design. Protein-ligand binding site prediction computational methods are inexpensive and fast compared with experimental methods. This paper proposes a new computational method, SXGBsite, which includes the synthetic minority over-sampling technique (SMOTE) and the Extreme Gradient Boosting (XGBoost). SXGBsite uses the position-specific scoring matrix discrete cosine transform (PSSM-DCT) and predicted solvent accessibility (PSA) to extract features containing sequence information. A new balanced dataset was generated by SMOTE to improve classifier performance, and a prediction model was constructed using XGBoost. The parallel computing and regularization techniques enabled high-quality and fast predictions and mitigated overfitting caused by SMOTE. An evaluation using 12 different types of ligand binding site independent test sets showed that SXGBsite performs similarly to the existing methods on eight of the independent test sets with a faster computation time. SXGBsite may be applied as a complement to biological experiments.


Subject(s)
Proteins/chemistry , Algorithms , Amino Acid Sequence , Binding Sites , Computational Biology/methods , Ligands , Position-Specific Scoring Matrices , Protein Binding , Proteins/metabolism , Wavelet Analysis
20.
J Med Syst ; 43(10): 307, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31420756

ABSTRACT

The image restoration has emerged as a very vital investigation technique in the domain of the image processing. The underlying motive behind the image restoration is devoted to the augmentation of the perceived visual impact of image so as to make it almost identical to the original image. A host of exploration approaches are now in vogues which are intended to steer clear of the noise, thereby regaining the images with original quality. In our earlier research, two distinct noise elimination methods like the (OGHP) and SURE shrinkage were effectively employed for the purpose of denoising, though the relative PSNR and SSIM efficiencies did not come up to the desired level. In the innovative approach envisaged in the document, at the outset, the noise is included by means of two processes like the salt and pepper and impulse noise. Subsequently, the pre-processing methods are performed with the able assistance of two novel filters such as the adaptive median filter and adaptive fuzzy switching. Thereafter, the preprocessed image is furnished to the succeeding function of noise elimination like the (OGHP) and SURE shrinkage. In the course of the OGHP noise elimination technique, the GHP constraints are optimized by employing the Cuckoo Search Algorithm. Thereafter, the noise-eliminated image is effectively estimated with the help of the Discrete Wavelet Transform (DWT). The consequential noiseless images are subjected to the image restoration procedure by efficiently employing the AGA approach. The cheering performance outcomes chant the success stories of the novel image restoration method, highlighting its superlative efficiency. Moreover, the efficacy of the innovative approach is assessed by means of a set of noise-polluted images and contrasted with the modern noiseless image restoration technique.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Humans , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio , Wavelet Analysis
SELECTION OF CITATIONS
SEARCH DETAIL