ABSTRACT
Although the United Nations has set sustainable management of water as an important worldwide goal, methods to supply clean water to underdeveloped countries are generally lacking. The ongoing COVID-19 pandemic as increased the worldwide use of filtering facepiece respirators (FFRs), resulting in enormous amounts of plastic waste. The present study tested whether FFRs could be recycled for use as preliminary water filters. Filtering of contaminated water with FFRs significantly reduced its turbidity, as well as concentrations of total organic carbon and major pollutants such as P, K, Mg, and Fe. Most of the filtered samples satisfied the drinking water quality standards of the World Health Organization. The additional use of FFRs decontamination process with hydrogen peroxide or ultraviolet germicidal irradiation, and sterilization with water purification tablets can eliminate disease-causing microorganisms and further reduce turbidity that would make water suitable for drinking. Recycling anti-COVID-19 FFRs for use as preliminary water filters is an effective and sustainable method for solving both drinking water problems and waste due to FFRs. Supplementary Information: The online version contains supplementary material available at 10.1007/s41742-023-00526-w.
ABSTRACT
Antimicrobial residues may pose harmful effects on the health of consumers. At the same time, an adequate quality of drinking water for animals is one of the important element to ensure animal welfare and food without antibacterials. The presented study is aimed at estimating the residue levels of antibacterial compounds, such as penicillins, cephalosporin, macrolides, tetracyclines, quinolones, sulphonamides, aminoglycosides, diaminopirymidines, pleuromutilines and lincosamides in meat and on-farm drinking water samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS), as a part of a surveillance system on pig and broiler farms within the project Healthy Livestock. A total of 870 samples of muscle from pig and broiler, as well as 229 water samples were analysed for antibiotic residues. Samples were collected from farms in EU countries in two steps, before and after implementation of a tailor-made health plan. In muscle samples, the detected concentrations of doxycycline in the post-intervention step (15.9-70.8 µg/kg) were lower than concentrations in the pre-intervention step (20.6-100 µg/kg). In water samples, doxycycline in an average concentration of 119 µg/L in the pre- and 23.1 µg/L in the post-intervention step, as well as enrofloxacin at concentrations of 170 µg/L in the pre- and 1.72 µg/L in the post-intervention step were quantified. Amoxicillin was only present before intervention. The obtained results confirm the effectiveness of the intervention actions. The concentrations of antibiotics in muscles and water were lower after implementation of a health plan on the farms.