Unable to write in log file ../../bases/logs/gimorg/logerror.txt Search | WHO COVID-19 Research Database
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Energy Economics ; 117, 2023.
Article in English | Scopus | ID: covidwho-2238803

ABSTRACT

This paper investigates the relationship between oil and airline stock returns under different time frequencies. First, we propose an Autoregressive moving average model with mixed frequency exogenous variable to analyse the different impacts of oil on airline stock returns on daily, weekly, and monthly basis. We consistently find a negative oil-airline stock return nexus on a daily basis, but a positive relationship on a weekly basis. While the former supports the economic-based channel, the latter is in line with the market inertia channel. Our findings help explain mixed results reported in the literature. Further, our time frequency connectedness analysis shows that the economic-based channel dominates the market inertia channel since the connectedness is more pronounced in the short-run compared to the medium- and long-run. Our block connectedness results highlight that business models of airline firms can play a significant role in affecting the connectedness, in which the low-cost airlines are more sensitive to the oil price changes. It is worth noting that there are distinguished drivers of the oil-airline stock return nexus in different time frequencies. The drivers also vary between the Global Financial Crisis and the COVID-19 pandemic. Our results are consistent under a battery of robustness checks and deliver important implications to investors, portfolio managers, and executives of airline firms. © 2022 Elsevier B.V.

2.
Chaos Solitons Fractals ; 158: 112097, 2022 May.
Article in English | MEDLINE | ID: covidwho-1778030

ABSTRACT

Epidemics are complex dynamical processes that are difficult to model. As revealed by the SARS-CoV-2 pandemic, the social behavior and policy decisions contribute to the rapidly changing behavior of the virus' spread during outbreaks and recessions. In practice, reliable forecasting estimations are needed, especially during early contagion stages when knowledge and data are insipient. When stochastic models are used to address the problem, it is necessary to consider new modeling strategies. Such strategies should aim to predict the different contagious phases and fast changes between recessions and outbreaks. At the same time, it is desirable to take advantage of existing modeling frameworks, knowledge and tools. In that line, we take Autoregressive models with exogenous variables (ARX) and Vector autoregressive (VAR) techniques as a basis. We then consider analogies with epidemic's differential equations to define the structure of the models. To predict recessions and outbreaks, the possibility of updating the model's parameters and stochastic structures is considered, providing non-stationarity properties and flexibility for accommodating the incoming data to the models. The Generalized-Random-Walk (GRW) and the State-Dependent-Parameter (SDP) techniques shape the parameters' variability. The stochastic structures are identified following the Akaike (AIC) criterion. The models use the daily rates of infected, death, and healed individuals, which are the most common and accurate data retrieved in the early stages. Additionally, different experiments aim to explore the individual and complementary role of these variables. The results show that although both the ARX-based and VAR-based techniques have good statistical accuracy for seven-day ahead predictions, some ARX models can anticipate outbreaks and recessions. We argue that short-time predictions for complex problems could be attained through stochastic models that mimic the fundamentals of dynamic equations, updating their parameters and structures according to incoming data.

3.
5th IEEE International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2021 ; : 83-88, 2021.
Article in English | Scopus | ID: covidwho-1708987

ABSTRACT

Infectious diseases can have an enormous impact on the public because they negatively affect not only mortality but also unemployment and other social impacts. It is crucial to anticipate additional resources to counter infectious diseases mathematical and statistical tools that can be used to generate forecasts of reported cases. In this paper, the multivariable autoregression methods were compared for forecasting infectious diseases. We discuss the methods and use them to forecast infectious diseases. In this case, we used several COVID-19 cases as the object of forecasting. We used three prediction methods as Vector Autoregression (VAR), Vector Autoregression Moving Average (VARMA), and Autoregression Moving Average with exogenous variable (VARMA-X). The results show that the models have different results, among three methods, VAR give the best result of forecasting daily covid case for both stationary and non-stationary data. While VARMA-X shows the lowest performance for forecasting the dataset. We suggest by combining the AR model with the ANN model can provide a better result for forecasting. © 2021 IEEE.

4.
Chaos Solitons Fractals ; 139: 110027, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-624706

ABSTRACT

The novel coronavirus disease (COVID-19) is a public health problem once according to the World Health Organization up to June 24th, 2020, more than 9.1 million people were infected, and more than 470 thousand have died worldwide. In the current scenario, the Brazil and the United States of America present a high daily incidence of new cases and deaths. Therefore, it is important to forecast the number of new cases in a time window of one week, once this can help the public health system developing strategic planning to deals with the COVID-19. The application of the forecasting artificial intelligence (AI) models has the potential of deal with dynamical behavior of time-series like of COVID-19. In this paper, Bayesian regression neural network, cubist regression, k-nearest neighbors, quantile random forest, and support vector regression, are used stand-alone, and coupled with the recent pre-processing variational mode decomposition (VMD) employed to decompose the time series into several intrinsic mode functions. All AI techniques are evaluated in the task of time-series forecasting with one, three, and six-days-ahead the cumulative COVID-19 cases in five Brazilian and American states, with a high number of cases up to April 28th, 2020. Previous cumulative COVID-19 cases and exogenous variables as daily temperature and precipitation were employed as inputs for all forecasting models. The models' effectiveness are evaluated based on the performance criteria. In general, the hybridization of VMD outperformed single forecasting models regarding the accuracy, specifically when the horizon is six-days-ahead, the hybrid VMD-single models achieved better accuracy in 70% of the cases. Regarding the exogenous variables, the importance ranking as predictor variables is, from the upper to the lower, past cases, temperature, and precipitation. Therefore, due to the efficiency of evaluated models to forecasting cumulative COVID-19 cases up to six-days-ahead, the adopted models can be recommended as a promising models for forecasting and be used to assist in the development of public policies to mitigate the effects of COVID-19 outbreak.

SELECTION OF CITATIONS
SEARCH DETAIL