ABSTRACT
The proteins (37%), carbohydrates (24.4%) and lipids (30.1%) contents of S. platensis from Nomayos provide the body with its structural and energy needs for about 518.8 Kcal per 100g of spirulina. Polyphenols (56.4 mEq. QE / g ES.), flavanols (13.2 mEq. QE / g ES.) flavonoids (21.2 mEq. QE / g ES.), carotenoids (3, 8%) and phycocyanin (16.15%) is responsible of its antioxidant capacities (7.5 + 0.33 mg eq. Vit C/g ES) and for a significant decrease in malondialdehyde MDA (< 0.001) concentration. Zinc (25 mG/Kg), Iron (256 mG/Kg), Selenium (1.24 mG/Kg), Manganese (23mG/Kg) and Copper (28.95 mG/Kg) reinforce this antioxidant power because they are cofactors of enzymes (Superoxide dismutase, Peroxidase, Catalase) which ensure the fight against free radicals. The presence of phycocyanin is an asset for the anti-inflammatory action. The significant decrease in IL-8 (p < 0.001) and TNF alpha (p < 0.04) levels confirms this property. On the other hand, the nonsignificant increase in Il-6 (1.56 to 2.18 pg/m;p > 0.05) would be partly responsible for the rise in CD4 levels (p < 0.001) and the reduction in viral load in immune deficiency patients (p = 0.000) supplemented with spirulina. In conclusion, S. platensis from Nomayos by its antioxidant, anti-inflammatory and immuno-stimulatory properties would be a good supplement food for subjects at risk of developing severe forms of COVID-19.
ABSTRACT
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
ABSTRACT
Honeysuckle (Lonicerae japonicae) has been used in functional tea products. The chemical compositions of the water and ethanol extracts of honeysuckle were examined in the present study, along with their potential in inhibiting SARS-CoV-2 spike protein binding to ACE2, suppressing ACE2 activity, and scavenging reactive free radicals. Thirty-six compounds were tentatively identified from the honeysuckle extracts using HPLC-MS/MS, with ten reported for the first time in honeysuckle. Both honeysuckle extracts inhibited the binding of SARS-CoV-2 spike protein to ACE2, as well as ACE2 activity. The ethanol extract exhibited a 100% inhibition on binding of the SARS-CoV-2 spike protein to ACE2 at 100 mg botanical equivalent/mL, whereas the water extract had a 65% binding inhibition at the same concentration. Furthermore, the water extract exhibited 90% ACE2 activity inhibition, which was stronger than that of the ethanol extract (62% inhibition) at the same botanical weight concentration. In addition, higher total phenolic contents and greater scavenging activities against hydroxyl (HOâ¢), DPPHâ¢, and ABTSâ¢+ radicals were observed in the water extract than the ethanol extract counterpart on a dry botanical weight concentration basis. These findings suggest honeysuckle has the potential to reduce the risk of SARS-CoV-2 infection and the development of severe COVID-19 symptoms.
ABSTRACT
This short review aimed at (i) providing an update on the health benefits associated with melatonin supplementation, while (ii) considering future potential research directions concerning melatonin supplementation use relative to Coronavirus disease of 2019 (COVID-19). A narrative review of the literature was undertaken to ascertain the effect of exogenous melatonin administration on humans. Night-time melatonin administration has a positive impact on human physiology and mental health. Indeed, melatonin (i) modulates the circadian components of the sleep-wake cycle; (ii) improves sleep efficiency and mood status; (iii) improves insulin sensitivity; and (iv) reduces inflammatory markers and oxidative stress. Melatonin has also remarkable neuroprotective and cardioprotective effects and may therefore prevent deterioration caused by COVID-19. We suggest that melatonin could be used as a potential therapy in the post-COVID-19 syndrome, and therefore call for action the research community to investigate on the potential use of exogenous melatonin to enhance the quality of life in patients with post-COVID-19 syndrome. See also Figure 1(Fig. 1).
ABSTRACT
Hydroxychloroquine (HCQ) is a potential drug molecule for treating malaria. Recently it has also been tried as adjustment in Covid 19 therapy. Interaction of HCQ with free radicals is very important, which controls its stability in the environment where free radicals are generated unintentionally. In this report, we present detailed investigation on the reactions of hydrated electrons (eaq -) and hydroxyl radical (â¢OH) with HCQ in aqueous solution through electron pulse radiolysis technique and computational studies. The degradation of HCQ was found to be faster in the case of reaction with â¢OH radicals. However, the degradation could be substantially slowed down in the presence of antioxidants like ascorbic acid and gallic acid. This revealed that the stability of HCQ could be enhanced in an oxidative environment in the presence of these two compounds, which are easily available through food supplements. Various global and local reactivity parameters are also determined to understand the reactivity trend using Hard-Soft Acid-Base (HSAB) principle in the realm of the DFT methods. Computational studies were performed to elucidate the site-specific reactivity trend towards the electrophilic and nucleophilic attack by calculating the condensed Fukui index for various species of HCQ.
ABSTRACT
Triclosan is a chlorinated biphenolic with a broad spectrum of antiseptic activities used in cosmetics and hygiene products. Continuous exposure can lead to absorption and bioaccumulation of this substance with harmful health effects. In fact, previous studies have shown that Triclosan acts as an endocrine-disrupting chemical on reproductive organs, with consequent negative effects on reproductive physiology. Therefore, to assess potential adverse impacts on fertility, we tested Triclosan on swine granulosa cells, a model of endocrine reproductive cells. We examined its effects on the main features of granulosa cell functions such as cell growth (BrdU incorporation and ATP production) and steroidogenesis (17-ß estradiol and progesterone secretion). Moreover, since oxidant−antioxidant balance plays a pivotal role in follicular function, redox status markers (superoxide, hydrogen peroxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity) were studied. Our results show that Triclosan significantly inhibits cell growth (p < 0.001), steroidogenesis (p < 0.001), superoxide and nitric oxide production (p < 0.001), while it increases (p < 0.05) enzymatic defense systems. Collectively, these data suggest a disruption of the main granulosa cell functions, i.e., proliferation and hormone production, as well as an imbalance in redox status. On these bases, we can speculate that Triclosan would impair granulosa cell functions, thus exerting negative effects on reproductive function. Further studies are needed to explore lower Triclosan concentrations and to unravel its mechanisms of action at gene level.
ABSTRACT
Epidemiological evidence links lower air quality with increased incidence and severity of COVID-19; however, mechanistic data have yet to be published. We hypothesized air pollution-induced oxidative stress in the nasal epithelium increased viral replication and inflammation. Nasal epithelial cells (NECs), collected from healthy adults, were grown into a fully differentiated epithelium. NECs were infected with the ancestral strain of SARS-CoV-2. An oxidant combustion by-product found in air pollution, the environmentally persistent free radical (EPFR) DCB230, was used to mimic pollution exposure four hours prior to infection. Some wells were pretreated with antioxidant, astaxanthin, for 24 hours prior to EPFR-DCB230 exposure and/or SARS-CoV-2 infection. Outcomes included viral replication, epithelial integrity, surface receptor expression (ACE2, TMPRSS2), cytokine mRNA expression (TNF-α, IFN-ß), intracellular signaling pathways, and oxidative defense enzymes. SARS-CoV-2 infection induced a mild phenotype in NECs, with some cell death, upregulation of the antiviral cytokine IFN-ß, but had little effect on intracellular pathways or oxidative defense enzymes. Prior exposure to EPFR-DCB230 increased SARS-CoV-2 replication, upregulated TMPRSS2 expression, increased secretion of the proinflammatory cytokine TNF-α, inhibited expression of the mucus producing MUC5AC gene, upregulated expression of p21 (apoptosis pathway), PINK1 (mitophagy pathway), and reduced levels of antioxidant enzymes. Pretreatment with astaxanthin reduced SARS-CoV-2 replication, downregulated ACE2 expression, and prevented most, but not all EPFR-DCB230 effects. Our data suggest that oxidant damage to the respiratory epithelium may underly the link between poor air quality and increased COVID-19. The apparent protection by antioxidants warrants further research.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , COVID-19/metabolism , Antioxidants/metabolism , Tumor Necrosis Factor-alpha/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Free Radicals/metabolism , Cytokines/metabolism , Respiratory Mucosa/metabolism , Oxidants/metabolismABSTRACT
Electron transfer plays a crucial role in ROS generation in living systems. Molecular oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms. Two main mechanisms of antioxidant defense by exogenous antioxidants are usually considered. The first is the inhibition of ROS generation, and the second is the trapping of free radicals. In the present study, we have elucidated both these mechanisms of antioxidant activity of glycyrrhizin (GL), the main active component of licorice root, using the chemically induced dynamic nuclear polarization (CIDNP) technique. First, it was shown that GL is capable of capturing a solvated electron, thereby preventing its capture by molecular oxygen. Second, we studied the effect of glycyrrhizin on the behavior of free radicals generated by UV irradiation of xenobiotic, NSAID-naproxen in solution. The structure of the glycyrrhizin paramagnetic intermediates formed after the capture of a solvated electron was established from a photo-CIDNP study of the model system-the dianion of 5-sulfosalicylic acid and DFT calculations.
ABSTRACT
Withania aristata (Aiton) Pauquy, a medicinal plant endemic to North African Sahara, is widely employed in traditional herbal pharmacotherapy. In the present study, the chemical composition, antioxidant, antibacterial, and antifungal potencies of extract from the roots of Withania aristata (Aiton) Pauquy (RWA) against drug-resistant microbes were investigated. Briefly, RWA was obtained by maceration with hydro-ethanol and its compounds were identified by use of high-performance liquid chromatography (HPLC). The antioxidant activity of RWA was determined by use of ferric-reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and total antioxidant capacity (TAC). The evaluation of the antimicrobial potential of RWA was performed against drug-resistant pathogenic microbial strains of clinical importance by use of the disc diffusion agar and microdilution assays. Seven compounds were identified in RWA according to HPLC analysis, including cichoric acid, caffeic acid, apigenin, epicatechin, luteolin, quercetin, and p-catechic acid. RWA had excellent antioxidant potency with calculated values of 14.0 ± 0.8 µg/mL (DPPH), 0.37 ± 0.08 mg/mL (FRAP), 760 ± 10 mg AAE/g (TAC), and 81.4% (ß-carotene). RWA demonstrated good antibacterial potential against both Gram-negative and Gram-positive bacteria, with inhibition zone diameters ranging from 15.24 ± 1.31 to 19.51 ± 0.74 mm, while all antibiotics used as drug references were infective, except for Oxacillin against S. aureus. Results of the minimum inhibitory concentration (MIC) assay against bacteria showed that RWA had MIC values ranging from 2.13 to 4.83 mg/mL compared to drug references, which had values ranging from 0.031 ± 0.003 to 0.064 ± 0.009 mg/mL. Similarly, respectable antifungal potency was recorded against the fungal strains with inhibition zone diameters ranging from 25.65 ± 1.14 to 29.00 ± 1.51 mm compared to Fluconazole, used as a drug reference, which had values ranging from 31.69 ± 1.92 to 37.74 ± 1.34 mg/mL. Results of MIC assays against fungi showed that RWA had MIC values ranging from 2.84 ± 0.61 to 5.71 ± 0.54 mg/mL compared to drug references, which had values ranging from 2.52 ± 0.03 to 3.21 ± 0.04 mg/mL. According to these outcomes, RWA is considered a promising source of chemical compounds with potent biological properties that can be beneficial as natural antioxidants and formulate a valuable weapon in the fight against a broad spectrum of pathogenic microbes.
Subject(s)
Anti-Infective Agents , Withania , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Antifungal Agents/pharmacology , Antioxidants/chemistry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Staphylococcus aureus , Withania/chemistryABSTRACT
Malaria is an infectious disease and a serious public health problem in the world, with 3.3 billion people in endemic areas in 100 countries and about 200 million new cases each year, resulting in almost 1 million deaths in 2018. Although studies look for strategies to eradicate malaria, it is necessary to know more about its pathophysiology to understand the underlying mechanisms involved, particularly the redox balance, to guarantee success in combating this disease. In this review, we addressed the involvement of oxidative stress in malaria and the potential benefits of antioxidant supplementation as an adjuvant antimalarial therapy.