Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Breath Res ; 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2107282

ABSTRACT

BACKGROUND: The spread of COVID-19 results in an increasing incidence and mortality. The typical diagnosis technique for SARS-CoV-2 infection is RT-PCR, which is relatively expensive, time-consuming, professional, and suffered from false-negative results. A reliable, non-invasive diagnosis method is in urgent need for the rapid screening of COVID-19 patients and controlling the epidemic. METHODS: Here we constructed an intelligent system based on the VOC biomarkers in human breath combined with machine learning models. The VOC profiles of 122 breath samples (65 of COVID-19 infections and 57 of controls) were identified with a portable gas chromatograph-mass spectrometer. Among them, eight VOCs exhibited significant differences (p<0.001) between the COVID-19 group and the control group. The cross-validation algorithm optimized support vector machine (SVM) model was employed for the prediction of COVID-19 infection. RESULTS: The proposed SVM model performed a powerful capability in discriminating COVID-19 patients from healthy controls, with an accuracy of 97.3%, a sensitivity of 100%, a specificity of 94.1%, and a precision of 95.2%, and an F1 score of 97.6%. The SVM model was also compared with other common machine models, including artificial neural network, k-nearest neighbor, and logistic regression, and demonstrated obvious superiority in the prediction of COVID-19 infection. Furthermore, user-friendly software was developed based on the optimized SVM model. CONCLUSION: The developed intelligent platform based on breath analysis provides a new strategy for the point-of-care screening of COVID and shows great potential in clinical application.

2.
Arab J Chem ; 15(11): 104302, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2041577

ABSTRACT

Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.

3.
Chem Biol Interact ; 367: 110179, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2031179

ABSTRACT

Currently, there are no FDA approved antiviral drugs available to treat COVID-19 patients. Also, due to emergence of new SARS-CoV-2 variants, the protective efficacy of vaccines could be reduced, hence it is urgent to have alternative treatments for combating the SARS-CoV-2 infection. Since, there is a long-standing history of herbal medicine in the treatment of respiratory diseases. In the present study, we investigated two polyherbal oil blend viz. Sudarshan AV and Elixir AV (SAV and EAV) in inhibiting SARS-COV-2. From GC-MS analysis of polyherbal oils (SAV and EAV) a total of 11 active compounds were selected, on the basis of their abundance and activity. Further, from the molecular docking studies, we found an inhibitory effect of these compounds on viral envelope and membrane, spike proteins whilst an agonistic effect with human host receptor angiotensin-converting enzyme 2 (ACE2) implicating the crucial role of the individual compound in resistance of SARS-CoV-2. Since, the in-silico results suggest that polyherbal oil (SAV and EAV) contributes in preventing the entry of SARS-CoV-2 into the human body, we further investigated the efficacy of polyherbal formulated essential oil (FEO; SAV & EAV) in prevention and treatment of COVID-19 in hamster model. The male golden Syrian hamsters (n = 23) were divided into 5 groups i.e., Group 1: Control (n = 3); Group 2: Infected (n = 5); Group 3: Infected + Remdesivir (n = 5); Group 4: Infected + FEO (n = 5) and Group 5: Prophylactic FEO + Infected (n = 5). In both treatment and prophylactic groups, the FEO's significantly reduced the lung injury investigated histo-pathologically and viral load expression measured by real time PCR in comparison to infected hamsters. Furthermore, cytokines expression analysis clearly highlighted the efficacy of FEO's due to its anti-inflammatory activity and overall protection in treatment groups. In conclusion, the FEO (SAV & EAV) seem to be potent in both prevention and treatment of COVID-19 and related lung injury.


Subject(s)
COVID-19 , Lung Injury , Oils, Volatile , Angiotensin-Converting Enzyme 2 , Animals , Anti-Inflammatory Agents , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/prevention & control , Cricetinae , Cytokines , Humans , Lung Injury/drug therapy , Male , Molecular Docking Simulation , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Vegetos ; : 1-6, 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2014654

ABSTRACT

The bryophytes consist of liverworts, mosses, and hornworts, among which the liverworts are quite different in having cellular oil bodies and contain numerous terpenoids, acetogenins, quinones, phenylpropanoids, flavonoids, etc. These metabolites exhibit interesting biological activity such as allergenic response, insecticide, cytotoxic, neurotrophic, antimicrobial, and anti-HIV actions, etc. Though several bioactive compounds have been isolated in many liverworts, yet most of the liverworts have been unexplored till date regarding their phytochemistry. The ability of liverworts to generate a wide range of important phytochemicals makes them a hoard of bioactive compounds. In the past, a few species of bryophytes have been evaluated against a few viruses and interesting results were obtained that showed their role as an immunity enhancer against viral infection. The phytoconstituents found in liverworts and mosses can be useful to increase human immunity against a variety of viruses, including SARS-CoV-2. Keeping this in view, one of the most developed and robust metabolomics technologies, Gas chromatography-mass spectroscopy (GC-MS) was used to estimate the various phytoconstituents found in a commonly growing thalloid liverwort, Plagiochasma appendiculatum, and moss Sphagnum fimbriatum. The obtained profiles were appraised for their bioactive potential and probable role as antiviral agents.

5.
Current Pharmaceutical Analysis ; 18(7):732-738, 2022.
Article in English | ProQuest Central | ID: covidwho-2002401

ABSTRACT

Aims: This study aims to determine the volatile chemical profile of ethanol-based hand sanitizer marketed in Brazil by HS-SPME/GC-MS. Background: Ethanol-based hand sanitizer has been used to protect against coronavirus disease (COVID-19). In general, these formulations are prepared using a carbomer. In 2020 and 2021, the production of hand sanitizer has increased due to the COVID-19 epidemic. Therefore, it is important to know the composition of this formulation because certain molecules present in some alcoholic mixtures can cause health problems. Methods: Ethanol-based hand sanitizer, AL1, AL2, BL1, CL1, DL1, EL1, FL1, and GL1 (ethanol derivative of fuel station), was purchased from manufacturers commercialized in Araguaína-TO and analyzed by HS-SPME/GC-MS for determining volatile chemical profile. Results: The analyses showed different compositions for the ethanol-based hand sanitizers. Samples AL1 and AL2 contained isopropyl alcohol, ethyl acetate, benzene, ethane-1,1-diethoxy, limonene, and other compounds. Linear alkanes were also detected. Only ethyl acetate and ethane-1,1-diethoxy were detected in CL1, in addition to ethanol. Thus, it is the most suitable sample among those analyzed. The presence of benzene, alkanes, and other hydrocarbons may be associated with the use of fuel ethanol to prepare these sanitizers, as shown in the sample GL1. Benzene, xylene, and toluene were found in FL1. This sample is the most contaminated among those analyzed. Conclusion: The chemical profile of commercial ethanol-based hand sanitizer from eight different samples sold in Araguaína-Brazil was established by GC-MS. Compounds like benzene and other alkanes were found in some samples. These results suggested possible contamination by alcohols unqualified in producing pharmaceutical substances. These analyzes are particularly relevant due to the pandemic situation to avoid COVID-19 proliferation. Benzene and other alkanes are harmful to human health and should be avoided in hand sanitizer production.

6.
Molecules ; 27(15)2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1969393

ABSTRACT

Siddha medicine is one of the oldest medical systems in the world and is believed to have originated more than 10,000 years ago and is prevalent across ancient Tamil land. It is undeniable that inhibitor preferences rise with increasing solubility in water due to the considerations pertaining to the bioavailability and the ease of which unabsorbed residues can be disposed of. In this study, we showed the phytochemical discrimination of Saussurea costus extracted with water at room temperature as a green extraction procedure. A total of 48 compounds were identified using gas chromatography-mass spectrometry (GC-MS). The fatty acids had a high phytochemical abundance at 73.8%, followed by tannins at 8.2%, carbohydrates at 6.9%, terpenoids at 4.3%, carboxylic acids at 2.5%, hydrocarbons at 2.4%, phenolic compounds at 0.2%, and sterols at 1.5%. Of these compounds, 22 were docked on the active side and on the catalytic dyad of His41 and Cys145 of the main protease of SARS-CoV-2 (Mpro). Eight active inhibitors were carbohydrates, five were fatty acids, three were terpenoids, two were carboxylic acids, one was a tannin, one was a phenolic compound, and one was a sterol. The best inhibitors were 4,8,13-Cyclotetradecatriene-1,3-diol, 1,5,9-trimethyl-12-(1-methylethyl), Andrographolide, and delta.4-Androstene-3.beta.,17.beta.-diol, with a binding affinity that ranged from -6.1 kcal/mol to -6.5 kcal/mol. The inhibitory effect of Saussurea costus of SARS-CoV-2 entry into the cell was studied using a pseudovirus with Spike proteins from the D614G variant and the VOC variants Gamma and Delta. Based on the viral cycle of SARS-CoV-2, our results suggest that the Saussurea costus aqueous extract has no virucidal effect and inhibits the virus in the events after cell entry. Furthermore, the biological activity of the aqueous extract was investigated against HSV-1 virus and two bacterial strains, namely Staphylococcus aureus ATCC BAA 1026 and Escherichia coli ATCC 9637. According to this study, an enormous number of water-soluble inhibitors were identified from Saussurea costus against the Mpro, and this is unprecedented as far as we know.


Subject(s)
COVID-19 , Saussurea , COVID-19/drug therapy , Carbohydrates , Carboxylic Acids , Fatty Acids , Humans , India , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2 , Saussurea/chemistry , Terpenes , Water
7.
J Ethnopharmacol ; 298: 115580, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-1966839

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The anxiety disorders are the most prevalent mental health condition, and anxiety is considered the sixth cause of disability surpassing diabetes mellitus, chronic obstructive pulmonary disease, and osteoarthritis. Besides, the COVID-19 pandemic provided an increase in the number of psychiatric diseases diagnosis in all social layers around the world. About 55%-94% of patients diagnosed with anxiety disorders are treated with benzodiazepines, meanwhile benzodiazepines can promote several adverse effects. In this way, alternative therapies, such as essential oils may offer significant benefits in the treatment of patients with anxiety disorders. However, the anxiolytic effect of these essential oils must be proper evaluated appropriate as well as the suitable dosage and side effect need further research. AIM OF THE STUDY: The aim was to evaluate the anxiolytic effect of Roman chamomile (Anthemis nobilis L.) and tangerine (Citrus reticulata Blanco) essential oils using the light-dark test in adult zebrafish (Danio rerio). MATERIAL AND METHODS: Both essential oils were analyzed by GC-MS and the major compounds were identified. The anxiolytic effect was evaluated by light-dark test in adult zebrafish. RESULTS: The results showed that roman chamomile essential oil has anxiolytic effect in adult zebrafish, whereas tangerine essential oil tends to reduce anxiety The major compounds of tangerine essential oil were limonene and γ-terpinene, and the major compounds of roman chamomile were pentadecyl-3-methyl-2-butenoate, hexadecyl-3-methyl-2-butenoate, 1-piperidinol and trans-1-ethyl-3-methyl-cyclopentane. CONCLUSIONS: The present study demonstrated that this anxiolytic effect may be attributed to the synergistic effect of the compounds present in roman chamomile essential oil, particularly the major compounds. The roman chamomile essential oil at the highest concentration showed anxiolytic effect. The tangerine essential oil showed a tendency to reduce anxiety, but it was not statistically significative. In addition, roman chamomile and tangerine essential oils did not cause cause alteration in locomotion activity and exploratory ability of the fish.


Subject(s)
Anti-Anxiety Agents , COVID-19 , Citrus , Oils, Volatile , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Benzodiazepines , Chamaemelum , Chamomile , Humans , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Pandemics , Zebrafish
8.
Energy Nexus ; 6: 100080, 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1946138

ABSTRACT

The novel coronavirus 2019 is spreading around the world and causing serious concern. However, there is limited information about novel coronavirus that hinders the design of effective drug. Bioactive compounds are rich source of chemo preventive ingredients. In our present research focuses on identifying and recognizing bioactive chemicals in Lantana camara, by evaluating their potential toward new coronaviruses and confirming the findings using molecular docking, ADMET, network analysis and dynamics investigations.. The spike protein receptor binding domain were docked with 25 identified compounds and 2,4-Ditertbutyl-phenol (-6.3kcal/mol) shows highest docking score, its interactions enhances the increase in binding and helps to identify the biological activity. The ADME/toxicity result shows that all the tested compounds can serve as inhibitors of the enzymes CYP1A2 and CYP2D6. In addition, Molecular dynamics simulations studies with reference inhibitors were carried out to test the stability. This study identifies the possible active molecules against the receptor binding domain of spike protein, which can be further exploited for the treatment of novel coronavirus 2019. The results of the toxicity risk for phytocompounds and their active derivatives showed a moderate to good drug score.

9.
Appl Biochem Biotechnol ; 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1935861

ABSTRACT

Novel SARS-CoV-2 claimed a large number of human lives. The main proteins for viral entry into host cells are SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and spike receptor-binding domain bound with ACE2 (spike RBD-ACE2; PDB ID: 6M0J). Currently, specific therapies are lacking globally. This study was designed to investigate the bioactive components from Moringa oleifera leaf (MOL) extract by gas chromatography-mass spectroscopy (GC-MS) and their binding interactions with spike glycoprotein and spike RBD-ACE2 protein through computational analysis. GC-MS-based analysis unveiled the presence of thirty-seven bioactive components in MOL extract, viz. polyphenols, fatty acids, terpenes/triterpenes, phytosterols/steroids, and aliphatic hydrocarbons. These bioactive phytoconstituents showed potential binding with SARS-CoV-2 spike glycoprotein and spike RBD-ACE2 protein through the AutoDock 4.2 tool. Further by using AutoDock 4.2 and AutoDock Vina, the top sixteen hits (binding energy ≥ - 6.0 kcal/mol) were selected, and these might be considered as active biomolecules. Moreover, molecular dynamics simulation was determined by the Desmond module. Interestingly two biomolecules, namely ß-tocopherol with spike glycoprotein and ß-sitosterol with spike RBD-ACE2, displayed the best interacting complexes and low deviations during 100-ns simulation, implying their strong stability and compactness. Remarkably, both ß-tocopherol and ß-sitosterol also showed the drug- likeness with no predicted toxicity. In conclusion, these findings suggested that both compounds ß-tocopherol and ß-sitosterol may be developed as anti-SARS-CoV-2 drugs. The current findings of in silico approach need to be optimized using in vitro and clinical studies to prove the effectiveness of phytomolecules against SARS-CoV-2.

10.
Food Front ; 1(2): 168-179, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1898716

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) and main protease (MPro) are significant target proteins, mainly involved in the attachment of viral genome to host cells and aid in replication of severe acute respiratory syndrome-coronaviruses or SARS-CoV genome. In the present study, we identified 11 potent bioactive compounds from ethanolic leaf extract of Ipomoea obscura (L.) by using GC-MS analysis. These potential bioactive compounds were considered for molecular docking studies against ACE2 and MPro target proteins to determine the antiviral effects against SARS-COV. Results exhibits that among 11 compounds from I. obscura (L.), urso-deoxycholic acid, demeclocycline, tetracycline, chlorotetracycline, and ethyl iso-allocholate had potential viral inhibitory activity. Hence, the present findings suggested that chemical constitution present in I. obscura (L.) will address inhibition of corona viral replication in host cells.

11.
Sci Total Environ ; 842: 156710, 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-1895423

ABSTRACT

Given the COVID-19 epidemic, the quantity of hazardous medical wastes has risen unprecedentedly. This study characterized and verified the pyrolysis mechanisms and volatiles products of medical mask belts (MB), mask faces (MF), and infusion tubes (IT) via thermogravimetric, infrared spectroscopy, thermogravimetric-Fourier transform infrared spectroscopy, and pyrolysis-gas chromatography/mass spectrometry analyses. Iso-conversional methods were employed to estimate activation energy, while the best-fit artificial neural network was adopted for the multi-objective optimization. MB and MF started their thermal weight losses at 375.8 °C and 414.7 °C, respectively, while IT started to degrade at 227.3 °C. The average activation energies were estimated at 171.77, 232.79, 105.14, and 205.76 kJ/mol for MB, MF, and the first and second IT stages, respectively. Nucleation growth for MF and MB and geometrical contraction for IT best described the pyrolysis behaviors. Their main gaseous products were classified, with a further proposal of their initial cracking mechanisms and secondary reaction pathways.


Subject(s)
COVID-19 , Pyrolysis , Hazardous Waste , Humans , Kinetics , Masks , Thermogravimetry
12.
Thermochimica Acta ; 711:N.PAG-N.PAG, 2022.
Article in English | Academic Search Complete | ID: covidwho-1839340

ABSTRACT

• Catalytic pyrolysis of COVID-19 mask/ZSM-5 zeolite was studied using TG-FTIR. • The generated compounds from catalytic pyrolysis process was studied using GC–MS. • Pyrolysis kinetics were calculated using the different methods. • TGA and DTG curves were simulated using DAEM and IPR with deviations <1. This research aims to develop a new thermochemical strategy to extract butane from the billions of wasted COVID-19 masks that are generated every month. The experiments were conducted with 3-ply face masks (3PFM) over ZSM-5 zeolite with different ratios of ZSM-5 to 3PFM (w/w: 6, 12, 25, and 50 wt.%) using thermogravimetry (TGA) at different heating conditions. Also, the effect of ZSM-5 concentration and heating rates was examined using TG-FTIR and GC–MS measurements. Besides, the kinetics behavior of the developed strategy was modelled using linear and nonlinear isoconversional modeling techniques, thus calculating the activation energy (Ea) for each conversion region. Finally, all required parameters to fit TGA and differential scanning calorimetry (DTG) experimental curves were estimated using the distributed activation energy (DAEM) and the independent parallel reactions (IPR) techniques, respectively. The results showed that the decomposed samples are very rich in aromatic and aliphatic (-C-H) compounds. Meanwhile, and based on GC–MS results, butanol compound was the basic component in the generated compounds with abundance of 31% at 25 wt.% of ZSM-5 at lowest heating rate (5 °C/min), whereas the average Ea at 25% of ZSM-5 (sample enriched with butanol) was estimated in the ranges 158–187 kJ mol−1 (linear methods with R2 > 0.96) and 167–169 kJ/mol (nonlinear methods with R2 > 0.98). Finally, DAEM and IPR succeeded to simulate TGA and DTG curves of ZSM-5/3PFM samples with very small deviation. Based on that, the catalytic pyrolysis strategy over ZSM-5 zeolite can be used effectively to dispose of COVID-19 masks and to convert them into butanol compound that can be used as a liquid fuel and lubricant. [ FROM AUTHOR] Copyright of Thermochimica Acta is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

13.
J Breath Res ; 16(3)2022 05 06.
Article in English | MEDLINE | ID: covidwho-1806207

ABSTRACT

COVID-19 detection currently relies on testing by reverse transcription polymerase chain reaction (RT-PCR) or antigen testing. However, SARS-CoV-2 is expected to cause significant metabolic changes in infected subjects due to both metabolic requirements for rapid viral replication and host immune responses. Analysis of volatile organic compounds (VOCs) from human breath can detect these metabolic changes and is therefore an alternative to RT-PCR or antigen assays. To identify VOC biomarkers of COVID-19, exhaled breath samples were collected from two sample groups into Tedlar bags: negative COVID-19 (n= 12) and positive COVID-19 symptomatic (n= 14). Next, VOCs were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Subjects with COVID-19 displayed a larger number of VOCs as well as overall higher total concentration of VOCs (p< 0.05). Univariate analyses of qualified endogenous VOCs showed approximately 18% of the VOCs were significantly differentially expressed between the two classes (p< 0.05), with most VOCs upregulated. Machine learning multivariate classification algorithms distinguished COVID-19 subjects with over 95% accuracy. The COVID-19 positive subjects could be differentiated into two distinct subgroups by machine learning classification, but these did not correspond with significant differences in number of symptoms. Next, samples were collected from subjects who had previously donated breath bags while experiencing COVID-19, and subsequently recovered (COVID Recovered subjects (n= 11)). Univariate and multivariate results showed >90% accuracy at identifying these new samples as Control (COVID-19 negative), thereby validating the classification model and demonstrating VOCs dysregulated by COVID are restored to baseline levels upon recovery.


Subject(s)
COVID-19 , Volatile Organic Compounds , Breath Tests/methods , Exhalation , Humans , SARS-CoV-2 , Volatile Organic Compounds/analysis
14.
Saudi J Biol Sci ; 29(6): 103290, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1799720

ABSTRACT

The recent COVID-19 pandemic resulted in major postharvest losses because most fresh produce could not be sold. Drying is an important thermal-based food preservation method which could have prolonged the shelf-life of these produce, but most drying technologies are costly, and cannot be afforded by small-time farmers. From this context, we were interested in evaluating the drying of Moringa oleifera leaves (MOL) using a low-cost self-built prototype convective-air dryer (CAD), alongside conventional drying methods for its antioxidant properties, microbial load and phytoconstituents. Results showed total polyphenol content was the highest (p < 0.05) in our CAD samples, and it retained among the highest total flavonoid content, total antioxidant capacity, total alkaloid content and DPPH radical scavenging activity. Furthermore, methanolic CAD extract presented lower coliform and yeast and mold count than the aqueous CAD extract. We also briefly explored MOL as a sanitizer where the microbial load of the methanolic extract was comparable (p > 0.05) with several commercial non-alcoholic sanitizers, indicating its commercialization potential as a bio-friendly sanitizer. Finally, using GC-MS, we are the first to report (best of our knowledge) on the presence of caprolactam, an important bio-medical field compound, in the CAD sample's aqueous extract.

15.
Food Chem X ; 14: 100302, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796842

ABSTRACT

Kombucha, originated in China 2000  years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.

16.
Environmental Science and Technology Letters ; 2022.
Article in English | Scopus | ID: covidwho-1795864

ABSTRACT

Facemasks are important tools for fighting against disease spread, including Covid-19 and its variants, and some may be treated with per- and polyfluoroalkyl substances (PFAS). Nine facemasks over a range of prices were analyzed for total fluorine and PFAS. The PFAS compositions of the masks were then used to estimate exposure and the mass of PFAS discharged to landfill leachate. Fluorine from PFAS accounted only for a small fraction of total fluorine. Homologous series of linear perfluoroalkyl carboxylates and the 6:2 fluorotelomer alcohol indicated a fluorotelomer origin. Inhalation was estimated to be the dominant exposure route (40%-50%), followed by incidental ingestion (15%-40%) and dermal (11%-20%). Exposure and risk estimates were higher for children than adults, and high physical activity substantially increased inhalation exposure. These preliminary findings indicate that wearing masks treated with high levels of PFAS for extended periods of time can be a notable source of exposure and have the potential to pose a health risk. Despite modeled annual disposal of 29-91 billion masks, and an assuming 100% leaching of individual PFAS into landfill leachate, mask disposal would contribute only an additional 6% of annual PFAS mass loads and less than 11 kg of PFAS discharged to U.S. wastewater. © 2022 American Chemical Society.

17.
Acta Poloniae Pharmaceutica - Drug Research ; 78(5):657-665, 2021.
Article in English | Scopus | ID: covidwho-1766340

ABSTRACT

Two active coronaviral proteins (3CLpro and Nsp15) have been studied using both the GC-MS and docking methods. These coronaviral proteins have been examined with the methanol extract generated from leaves of the Arum palaestinum. According to the GC-MS findings, 19 major natural compounds are present in the plant’s methanolic extract. The lowest Binding Energy (LBE) and the inhibition constant (Ki) have been used to identify and classify the potential of these lead drugs with their pharmacological properties. The affinity of these compounds with coronaviral proteins has been evaluated to reveal the usage of these compounds at the active sites of the receptors, 3CLpro (PDB ID: 6LU7) and Nsp15 (PDB ID: 6VWW). The results of β-Sitosterol, Androstan-3-one, Phenobarbital, Maltose, and α-Tocopherol show more affinity to Nsp15 and 3CLpro than to the supporting control drugs. Furthermore, an evaluation of the interactions of these components with the amino acids of 3CLpro and Nsp15 revealed that β-Sitosterol has the best LBE score and Ki value as compared with those of the approved medication and all other compounds under investigation. Consequently, these potential compounds may be modern inhibitors of coronavirus. Further in vitro and in vivo studies are needed for such computational findings. © 2021 by Polish Pharmaceutical Society. This is an open-access article under the CC BY NC license (https://creativecommons.org/licenses/by-nc/4.0/).

18.
Thermochimica Acta ; : 179198, 2022.
Article in English | ScienceDirect | ID: covidwho-1757863

ABSTRACT

This research aims to develop a new thermochemical strategy to extract butane from the billions of wasted Covid-19 masks that are generated every month. The experiments were conducted with 3-ply face masks (3PFM) over ZSM-5 zeolite with different ratios of ZSM-5 to 3PFM (w/w: 6, 12, 25, and 50 wt.%) using thermogravimetry (TGA) at different heating conditions. Also, the effect of ZSM-5 concentration and heating rates was examined using TG-FTIR and GC-MS measurements. Besides, the kinetics behaviour of the developed strategy was modelled using linear and nonlinear isoconversional modelling techniques, thus calculating the activation energy (Ea) for each conversion region. Finally, all required parameters to fit TGA and differential scanning calorimetry (DTG) experimental curves were estimated using the distributed activation energy (DAEM) and the independent parallel reactions (IPR) techniques, respectively. The results showed that the decomposed samples are very rich in aromatic and aliphatic (-C-H) compounds. Meanwhile, and based on GC-MS results, butanol compound was the basic component in the generated compounds with abundance of 31% at 25 wt.% of ZSM-5 at lowest heating rate (5 ˚C/min), whereas the average Ea at 25% of ZSM-5 (sample enriched with butanol) was estimated in the ranges 158-187 kJ mol−1 (linear methods with R2 > 0.96) and 167-169 kJ/mol (nonlinear methods with R2 > 0.98). Finally, DAEM and IPR succeeded to simulate TGA and DTG curves of ZSM-5/3PFM samples with very small deviation. Based on that, the catalytic pyrolysis strategy over ZSM-5 zeolite can be used effectively to dispose of Covid-19 masks and to convert them into butanol compound that can be used as a liquid fuel and lubricant.

19.
EClinicalMedicine ; 45: 101308, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1693678

ABSTRACT

BACKGROUND: The current SARS-CoV-2 pandemic created an urgent need for rapid, infection screening applied to large numbers of asymptomatic individuals. To date, nasal/throat swab polymerase chain reaction (PCR) is considered the "gold standard". However, this is inconducive to mass, point-of-care (POC) testing due to person discomfort during sampling and a prolonged result turnaround. Breath testing for disease specific organic compounds potentially offers a practical, rapid, non-invasive, POC solution. The study compares the Breath of Health, Ltd. (BOH) breath analysis system to PCR's ability to screen asymptomatic individuals for SARS-CoV-2 infection. The BOH system is mobile and combines Fourier-transform infrared (FTIR) spectroscopy with artificial intelligence (AI) to generate results within 2 min and 15 s. In contrast to prior SARS-CoV-2 breath analysis research, this study focuses on diagnosing SARS-CoV-2 via disease specific spectrometric profiles rather than through identifying the disease specific molecules. METHODS: Asymptomatic emergency room patients with suspected SARS-CoV-2 exposure in two leading Israeli hospitals were selected between February through April 2021. All were tested via nasal/throat-swab PCR and BOH breath analysis. In total, 297 patients were sampled (mean age 57·08 ± SD 18·86, 156 males, 139 females, 2 unknowns). Of these, 96 were PCR-positive (44 males, 50 females, 2 unknowns), 201 were PCR-negative (112 males, 89 females). One hundred samples were used for AI identification of SARS-CoV-2 distinguishing spectroscopic wave-number patterns and diagnostic algorithm creation. Algorithm validation was tested in 100 proof-of-concept samples (34 PCR-positive, 66 PCR-negative) by comparing PCR with AI algorithm-based breath-test results determined by a blinded medical expert. One hundred additional samples (12 true PCR-positive, 85 true PCR-negative, 3 confounder false PCR-positive [not included in the 297 total samples]) were evaluated by two blinded medical experts for further algorithm validation and inter-expert correlation. FINDINGS: The BOH system identified three distinguishing wave numbers for SARS-CoV-2 infection. In the first phase, the single expert identified the first 100 samples correctly, yielding a 1:1 FTIR/AI:PCR correlation. The two-expert second-phase also yielded 1:1 FTIR/AI:PCR correlation for 97 non-confounders and null correlation for the 3 confounders. Inter-expert correlation was 1:1 for all results. In total, the FTIR/AI algorithm demonstrated 100% sensitivity and specificity for SARS-CoV-2 detection when compared with PCR. INTERPRETATION: The SARS-CoV-2 method of breath analysis via FTIR with AI-based algorithm demonstrated high PCR correlation in screening for asymptomatic individuals. This is the first practical, rapid, POC breath analysis solution with such high PCR correlation in asymptomatic individuals. Further validation is required with a larger sample size. FUNDING: Breath of Health Ltd, Rehovot, Israel provided study funding.

20.
AAPS Open ; 8(1): 1, 2022.
Article in English | MEDLINE | ID: covidwho-1629370

ABSTRACT

The COVID-19 pandemic has led to increased usage of hand sanitizer products by the public to prevent the spread of COVID-19 and decrease the likelihood of acquiring the disease. The increase in demand has also led to an increase in the number of manufacturers. This work describes the FDA's Center for Drug Evaluation and Research (CDER) laboratories efforts to develop tests to assess the quality of hand sanitizer products containing ethanol or isopropanol as the primary active ingredient. The products were evaluated for the active ingredient content and determination of the 12 impurities listed in the FDA Hand Sanitizer Temporary Guidance, followed by a spike recovery assay performed to verify the test results. Extensive method development was conducted including an investigation into the stability of ethanol, isopropanol, and the 12 impurities. Stability and kinetic studies confirmed the instability of acetal in acidic liquid hand sanitizer products during spike recovery assay testing. The headspace GC-MS method was validated according to ICH Q2 (R1) guidelines and the spike recovery assay was validated using three concentrations of standards for the drug product. During method application, six liquid hand sanitizer products were tested and all were determined to have ethanol or isopropanol above 70% v/v. Two liquid hand sanitizer products were determined to contain acetaldehyde as an impurity above the FDA recommended safety levels. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41120-021-00049-8.

SELECTION OF CITATIONS
SEARCH DETAIL