ABSTRACT
The objective of this research was to investigate the behavior and conditions for CO2 adsorption using a mixture of CO2/N2 over a fixed-bed column of zeolite 5A. The study was performed with a variation in gas composition of CO2/N2 as a 20/80, 50/50, and 80/20 volume %, the adsorption temperatures as 298, 333, and 373 K and the total feed flow rates as 1, 2, and 4 L/h under 100 kPa pressure. The Bohart–Adams, Yoon–Nelson, and Thomas models were used to predict the breakthrough behavior of CO2 adsorption in a fixed column. Furthermore, the adsorption mechanism has been investigated using the kinetics adsorption of pseudo-first-order, pseudo-second-order, Boyd model, and intraparticle model. Increasing the CO2 composition of a gas mixture resulted in a high CO2 adsorption capacity because of the high partial pressure of CO2. The capacity of CO2 adsorption was decreased with increasing temperature because of physical adsorption with an exothermic reaction. The CO2 adsorption capacity was also decreased with increasing feed flow rates with inadequate time for CO2 adsorbates diffusion into the pores of the adsorbent before exiting the packed bed. The CO2 adsorption by zeolite 5A confirmed that the physical adsorption with intraparticle diffusion was the rate-controlling step of the whole process.
ABSTRACT
The coronavirus disease (COVID-19) outbreak has presented enormous challenges for healthcare, societal, and economic systems worldwide. There is an urgent global need for a universal vaccine to cover all SARS-CoV-2 mutant strains to stop the current COVID-19 pandemic and the threat of an inevitable second wave of coronavirus. Carbon dioxide is safe and superior antimicrobial, which suggests it should be effective against coronaviruses and mutants thereof. Depending on the therapeutic regime, CO2 could also ameliorate other COVID-19 symptoms as it has also been reported to have antioxidant, anti-inflammation, anti-cytokine effects, and to stimulate the human immune system. Moreover, CO2 has beneficial effects on respiratory physiology, cardiovascular health, and human nervous systems. This article reviews the rationale of early treatment by inhaling safe doses of warmed humidified CO2 gas, either alone or as a carrier gas to deliver other inhaled drugs may help save lives by suppressing SARS-CoV-2 infections and excessive inflammatory responses. We suggest testing this somewhat counter-intuitive, but low tech and safe intervention for its suitability as a preventive measure and treatment against COVID-19. Overall, development and evaluation of this therapy now may provide a safe and economical tool for use not only during the current pandemic but also for any future outbreaks of respiratory diseases and related conditions.