Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Journal of Applied Statistics ; : 1-24, 2022.
Article in English | Academic Search Complete | ID: covidwho-1740577


Recent studies have produced inconsistent findings regarding the association between community social vulnerability and COVID-19 incidence and death rates. This inconsistency may be due, in part, to the fact that these studies modeled cases and deaths separately, ignoring their inherent association and thus yielding imprecise estimates. To improve inferences, we develop a Bayesian multivariate negative binomial model for exploring joint spatial and temporal trends in COVID-19 infections and deaths. The model introduces smooth functions that capture long-term temporal trends, while maintaining enough flexibility to detect local outbreaks in areas with vulnerable populations. Using multivariate autoregressive priors, we jointly model COVID-19 cases and deaths over time, taking advantage of convenient conditional representations to improve posterior computation. As such, the proposed model provides a general framework for multivariate spatiotemporal modeling of counts and rates. We adopt a fully Bayesian approach and develop an efficient posterior Markov chain Monte Carlo algorithm that relies on easily sampled Gibbs steps. We use the model to examine incidence and death rates among counties with high and low social vulnerability in the state of Georgia, USA, from 15 March to 15 December 2020. [ FROM AUTHOR] Copyright of Journal of Applied Statistics is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

Spat Stat ; 49: 100540, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1440369


Spatial dependence is usually introduced into spatial models using some measure of physical proximity. When analysing COVID-19 case counts, this makes sense as regions that are close together are more likely to have more people moving between them, spreading the disease. However, using the actual number of trips between each region may explain COVID-19 case counts better than physical proximity. In this paper, we investigate the efficacy of using telecommunications-derived mobility data to induce spatial dependence in spatial models applied to two Spanish communities' COVID-19 case counts. We do this by extending Besag York Mollié (BYM) models to include both a physical adjacency effect, alongside a mobility effect. The mobility effect is given a Gaussian Markov random field prior, with the number of trips between regions as edge weights. We leverage modern parametrizations of BYM models to conclude that the number of people moving between regions better explains variation in COVID-19 case counts than physical proximity data. We suggest that this data should be used in conjunction with physical proximity data when developing spatial models for COVID-19 case counts.

Spat Stat ; 49: 100508, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1174503


Modelling the small-area spatio-temporal dynamics of the Covid-19 pandemic is of major public health importance, because it allows health agencies to better understand how and why the virus spreads. However, in Scotland during the first wave of the pandemic testing capacity was severely limited, meaning that large numbers of infected people were not formally diagnosed as having the virus. As a result, data on confirmed cases are unlikely to represent the true infection rates, and due to the small numbers of positive tests these data are not available at the small-area level for confidentiality reasons. Therefore to estimate the small-area dynamics in Covid-19 incidence this paper analyses the spatio-temporal trends in telehealth data relating to Covid-19, because during the first wave of the pandemic the public were advised to call the national telehealth provider NHS 24 if they experienced symptoms of the virus. Specifically, we propose a multivariate spatio-temporal correlation model for modelling the proportions of calls classified as either relating to Covid-19 directly or having related symptoms, and provide software for fitting the model in a Bayesian setting using Markov chain Monte Carlo simulation. The model was developed in partnership with the national health agency Public Health Scotland, and here we use it to analyse the spatio-temporal dynamics of the first wave of the Covid-19 pandemic in Scotland between March and July 2020, specifically focusing on the spatial variation in the peak and the end of the first wave.