Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
New Scientist ; 257(3422):19-19, 2023.
Article in English | Academic Search Complete | ID: covidwho-2242532

ABSTRACT

VIRUS samples from people in the UK with severe respiratory infections, such as flu and RSV, will be routinely tested by DNA sequencing. "Other than a small amount of genome sequencing in flu cases, there really isn't any routine genomic surveillance of these other viruses", says Harrison. [Extracted from the article] Copyright of New Scientist is the property of New Scientist Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
International Journal of Infectious Diseases ; 126:73-78, 2023.
Article in English | Scopus | ID: covidwho-2242218

ABSTRACT

Objectives: This study assessed the concentration of SARS-CoV-2 in the air of hospital rooms occupied by patients with COVID-19 who had viable SARS-CoV-2 in nasopharyngeal (NP) samples in early infection. Methods: Between July and October 2021, NP swabs were collected from 20 patients with early SARS-CoV-2 infection admitted to a tertiary hospital in Japan. Air samples were collected from their rooms, tested for SARS-CoV-2 RNA, and cultured to determine potential infectivity. Results: The NP swab samples of 18 patients were positive for viable SARS-CoV-2 (median concentration: 4.0 × 105 tissue culture infectious dose 50/ml). In the air samples, viral RNA (median concentration: 1.1 × 105 copies/m3) was detected in 12/18 (67%) patients, and viable virus (median concentration: 8.9 × 102 tissue culture infectious dose 50/m3) was detected in 5/18 (28%) patients. The median time between illness onset and sampling was 3 days. The RNA concentration was significantly higher in samples wherein viable SARS-CoV-2 was detected than in samples in which viable virus was not detected (P-value = 0.027). Conclusion: Viable SARS-CoV-2 can be detected in the air surrounding patients with early SARS-CoV-2 infection. Health care workers should pay attention to infection control when caring for patients with early SARS-CoV-2 infection. © 2022 The Author(s)

3.
Journal of Virological Methods ; 314:114692.0, 2023.
Article in English | ScienceDirect | ID: covidwho-2241972

ABSTRACT

Nucleic acid amplification test (NAAT) is the gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. However, genetic mutations in the virus can affect the result. Cycle threshold (Ct) values of N genes and their association with mutations using SARS-CoV-2 positive specimens diagnosed by the Xpert Xpress SARS-CoV-2 were examined in this study. In total, 196 nasopharyngeal swab specimens were tested for SARS-CoV-2 infection using the Xpert Xpress SARS-CoV-2, and 34 were positive. WGS was performed for four outlier samples with increased ΔCt identified by Scatterplot analysis as well as seven control samples without increased ΔCt in the Xpert Xpress SARS-CoV-2. The presence of the G29179T mutation was identified as a cause of increased ΔCt. PCR using the Allplex™ SARS-CoV-2 Assay did not show a similar increase in ΔCt. Previous reports focusing on N-gene mutations and their effects on SARS-CoV-2 testing including the Xpert Xpress SARS-CoV-2 were also summarized. While a single mutation that impacts one target of a multiplex NAAT is not a true detection failure, mutation compromising NAAT target region can cause confusion of the results and render the assay susceptible to diagnostic failure.

4.
Journal of the Formosan Medical Association ; 122(1):73-77, 2023.
Article in English | Scopus | ID: covidwho-2241581

ABSTRACT

he first imported case of monkeypox in Taiwan was diagnosed in an Asian man with HIV-1 infection and asymptomatic COVID-19, returning from Germany. Atypical presentations included asynchronous skin lesions, anogenital lesions and prominent inguinal lymphadenopathy. Whole genomic sequence alignment indicate that the Taiwan strain clustered together with human monkeypox virus West African clade B.1, currently circulating in Europe. Prompt diagnosis and infection control measures are crucial to mitigate the spread of monkeypox. © 2022

5.
Journal of Veterinary Research (Poland) ; 66(4):449-458, 2022.
Article in English | EMBASE | ID: covidwho-2240333

ABSTRACT

Introduction: Many countries have reported severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infections in mink, and transmission back to humans has raised the concern of novel variants emerging in these animals. The monitoring system on Polish mink farms detected SARS-CoV-2 infection first in January 2021 and has been kept in place since then. Material and Methods: Oral swab samples collected between February 2021 and March 2022 from 11,853 mink from 594 farms in different regions of Poland were screened molecularly for SARS-CoV-2. Isolates from those with the highest loads of viral genetic material from positive farms were sequenced and phylogenetically analysed. Serological studies were also carried out for one positive farm in order to follow the antibody response after infection. Results: SARS-CoV-2 RNA was detected in mink on 11 farms in 8 out of 16 Polish administrative regions. Whole genome sequences were obtained for 19 SARS-CoV-2 strains from 10 out of 11 positive farms. These genomes belonged to four different variants of concern (VOC) - VOC-Gamma (20B), VOC-Delta (21J), VOC-Alpha (20I) and VOC-Omicron (21L) - and seven different Pango lineages - B.1.1.464, B.1.1.7, AY.43, AY.122, AY.126, B.1.617.2 and BA.2. One of the nucleotide and amino acid mutations specific for persistent strains found in the analysed samples was the Y453F host adaptation mutation. Serological testing of blood samples revealed a high rate of seroprevalence on the single mink farm studied. Conclusion: Farmed mink are highly susceptible to infection with SARS-CoV-2 of different lineages, including Omicron BA.2 VOC. As these infections were asymptomatic, mink may become an unnoticeable virus reservoir generating new variants potentially threatening human health. Therefore, real-time monitoring of mink is extremely important in the context of the One Health approach.

6.
Virus Research ; 323, 2023.
Article in English | Scopus | ID: covidwho-2239926

ABSTRACT

Human respiratory syncytial virus (RSV) is responsible of lower respiratory tract infections which may be severe in infants, elderly and immunocompromised adults. Europe and North-American countries have observed a massive reduction of RSV incidence during the 2020–2021 winter season. Using a systematic RSV detection coupled to SARS-CoV-2 for all adult patients admitted at the Foch hospital (Suresnes, France) between January and March 2021 (n = 11,324), only eight RSV infections in patients with prolonged RNA shedding were diagnosed. RSV whole-genome sequencing revealed that six and two patients were infected by RSV groups A and B, respectively. RSV carriage lasted from 7 to at least 30 days disregarding of RSV lineage. The most prolonged RSV shedding was observed in an asymptomatic patient. We detected novel patient-specific non-synonymous mutations in the G glycoprotein gene, including a double identical mutation in the repeated region for one patient. No additional mutation occurred in the RSV genome over the course of infection in the four patients tested for. In conclusion, our results suggest that the temporal shift in the RSV epidemic is not likely to be explained by the emergence of a high frequency, unreported variant. Moreover, prolonged RSV carriages in asymptomatic patients could play a role in virus spread. © 2022

7.
Frontiers in Cellular and Infection Microbiology ; 12, 2023.
Article in English | Scopus | ID: covidwho-2239918

ABSTRACT

Introduction: Throughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future. Methods: In this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital. Results: Our results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times. Discussion: These analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19. Copyright © 2023 Cook, Beckett, Glaysher, Goudarzi, Fearn, Loveson, Elliott, Wyllie, Lloyd, Bicknell, Lumley, Chauhan, Robson and The COVID-19 Genomics UK (COG-UK) consortium.

8.
Journal of Medical Virology ; 95(1), 2023.
Article in English | Scopus | ID: covidwho-2239613
9.
Pathogens ; 12(1), 2023.
Article in English | EMBASE | ID: covidwho-2239208
10.
Journal of Hospital Infection ; 131:81-88, 2023.
Article in English | Scopus | ID: covidwho-2239136

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been a continuing source of hospital-acquired infection and outbreaks. At Akershus University Hospital in Norway, traditional contact tracing has been combined with whole-genome sequencing (WGS) surveillance in real-time to investigate potential hospital outbreaks. Aim: To describe the advantages and challenges encountered when using WGS as a real-time tool in hospital outbreak investigation and surveillance during the SARS-CoV-2 pandemic. Methods: Routine contact tracing in the hospital was performed for all healthcare workers (HCWs) who tested positive for SARS-CoV-2. Viral RNA from all positive patient and HCW samples was sequenced in real-time using nanopore sequencing and the ARTIC Network protocol. Suspected outbreaks involving five or more individuals with viral sequences were described. Findings: Nine outbreaks were suspected based on contact tracing, and one outbreak was suspected based on WGS results. Five outbreaks were confirmed;of these, two outbreaks were supported but could not be confirmed by WGS with high confidence, one outbreak was found to consist of two different lineages, and two outbreaks were refuted. Conclusions: WGS is a valuable tool in hospital outbreak investigations when combined with traditional contact tracing. Inclusion of WGS data improved outbreak demarcation, identified unknown transmission chains, and highlighted weaknesses in existing infection control measures. © 2022 The Author(s)

11.
Nature Reviews Microbiology ; 21(2):69.0, 2023.
Article in English | Scopus | ID: covidwho-2246347
12.
Genes and Genomics ; 45(1):123-134, 2023.
Article in English | Scopus | ID: covidwho-2245534

ABSTRACT

Background: Ralstonia solanacearum causes bacterial wilt of Pogostemon cablin which is an important aromatic herb and also the main materials of COVID-19 therapeutic traditional drugs. However, we are lacking the information on the genomic sequences of R. solanacearum isolated from P. cablin. Objective: The acquisition and analysis of this whole-genome sequence of the P. cablin bacterial wilt pathogen. Methods: An R. solanacearum strain, named SY1, was isolated from infected P. cablin plants, and the complete genome sequence was sequenced and analyzed. Results: The SY1 strain contains a 3.70-Mb chromosome and a 2.18-Mb megaplasmid, with GC contents of 67.57% and 67.41%, respectively. A total of 3308 predicted genes were located on the chromosome and 1657 genes were located in the megaplasmid. SY1 strain has 273 unique genes compared with five representative R. solanacearum strains, and these genes were enriched in the plant–pathogen interaction pathway. SY1 possessed a higher syntenic relationship with phylotype I strains, and the arsenal of type III effectors predicted in SY1 were also more closely related to those of phylotype I strains. SY1 contained 14 and 5 genomic islands in its chromosome and megaplasmid, respectively, and two prophage sequences in its chromosome. In addition, 215 and 130 genes were annotated as carbohydrate-active enzymes and antibiotic resistance genes, respectively. Conclusion: This is the first genome-scale assembly and annotation for R. solanacearum which isolated from infected P. cablin plants. The arsenal of virulence and antibiotic resistance may as the determinants in SY1 for infection of P. cablin plants. © 2022, The Author(s) under exclusive licence to The Genetics Society of Korea.

14.
Frontiers in Medicine ; 9, 2023.
Article in English | EMBASE | ID: covidwho-2245267

ABSTRACT

Introduction: The emergence of the Omicron SARS-CoV-2 variant from various states of India in early 2022 has caused fear of its rapid spread. The lack of such reports from Chhattisgarh (CG), a central state in India, has prompted us to identify the Omicron circulating lineages and their mutational dynamics. Materials and methods: Whole-genome sequencing (WGS) of SARS-CoV-2 was performed in 108 SARS-CoV-2 positive combined samples of nasopharyngeal and oropharyngeal swabs obtained from an equal number of patients. Results: All 108 SARS-CoV-2 sequences belonged to Omicron of clade 21L (84%), 22B (11%), and 22D (5%). BA.2 and its sub-lineages were predominantly found in 93.5% of patients, BA.5.2 and its sub-lineage BA.5.2.1 in 4.6% of patients, and B.1.1.529 in 2% of patients. Various BA.2 sub-lineages identified were BA.2 (38%), BA.2.38 (32%), BA.2.75 (9.25%), BA.2.56, BA.2.76, and BA.5.2.1 (5% each), BA.2.74 (4.6%), BA.5.2.1 (3.7%), BA.2.43 and B.1.1.529 (1.8% each), and BA.5.2 (0.9%). Maximum mutations were noticed in the spike (46), followed by the nucleocapsid (5), membrane (3), and envelope (2) genes. Mutations detected in the spike gene of different Omicron variants were BA.1.1.529 (32), BA.2 (44), BA.2.38 (37), BA.2.43 (38), BA.2.56 (30), BA.2.74 (31), BA.2.75 (37), BA.2.76 (32), BA.5.2, and BA.5.2.1 (38 similar mutations). The spike gene showed the signature mutations of T19I and V213G in the N-terminal domain (NTD), S373P, S375F, T376A, and D405N in receptor-binding domain (RBD), D614G, H655Y, N679K, and P681H at the furin cleavage site, N764K and D796K in fusion peptide, and Q954H and N969K in heptapeptide repeat sequence (HR)1. Notably, BA.2.43 exhibited a novel mutation of E1202Q in the C terminal. Other sites included ORF1a harboring 13 mutations followed by ORF1b (6), ORF3a (2), and ORF6 and ORF8 (1 mutation each). Conclusion: BA.2 followed by BA.2.38 was the predominant Omicron lineage circulating in Chhattisgarh. BA.2.75 could supersede other Omicron due to its mutational consortium advantage. The periodical genomic monitoring of Omicron variants is thus required for real-time assessment of circulating strains and their mutational-induced severity.

15.
Science of the Total Environment ; 857, 2023.
Article in English | Scopus | ID: covidwho-2244602

ABSTRACT

As of 8 July 2022, the World Health Organization (WHO) have reported 1010 probable cases of acute hepatitis of unknown aetiology in children worldwide, including approximately 250 cases in the United Kingdom (UK). Clinical presentations have often been severe, with liver transplantation a frequent clinical outcome. Human adenovirus F41 (HAdV-F41) has been detected in most children with acute hepatitis, but its role in the pathogenesis of this infection has yet to be established. Wastewater-based epidemiology (WBE) has become a well-established tool for monitoring the community spread of SARS-CoV-2, as well as other pathogens and chemicals. In this study, we adopted a WBE approach to monitoring levels of HAdV-F40/41 in wastewater before and during an acute hepatitis outbreak in Northern Ireland. We report increasing detection of HAdV-F40/41 in wastewater, concomitant with increasing numbers of clinical cases. Amplicon whole genome sequencing further classified the wastewater-derived HAdV as belonging to the F41 genotype which in turn was homologous to clinically derived sequences. We propose that WBE has the potential to inform community surveillance of HAdV-F41 and can further contribute to the ongoing global discussion supporting HAdV-F41 involvement in acute hepatitis cases. © 2022 The Authors

16.
Journal of Hospital Infection ; 131:23-33, 2023.
Article in English | Scopus | ID: covidwho-2243839

ABSTRACT

Background: Hospital transmission of SARS-CoV-2 has proved difficult to control, with healthcare-associated infections troublesome throughout. Aim: To understand factors contributing to hospital transmission of infections, which is necessary for containing spread. Methods: An outbreak of 56 staff and patient cases of COVID-19 over a 31-day period in a tertiary referral unit is presented, with at least a further 29 cases identified outside of the unit and the hospital by whole genome sequencing (WGS). Findings: Transmission is documented from staff to staff, staff to patients, and patients to staff, showing disruption of a tertiary referral service, despite implementation of nationally recommended control measures, superior ventilation, and use of personal protective equipment. There was extensive spread from the index case, despite this patient spending only 10 h bed bound on the ward in strict cubicle isolation and with an initial single target low level (CT = 32) polymerase chain reaction test. Conclusion: This investigation highlights how effectively and rapidly SARS-CoV-2 can spread in certain circumstances. It raises questions about infection control measures in place at the time and calls into question the premise that transmissibility can be reliably detected by using lower sensitivity rapid antigen lateral flow tests. We also highlight the value of early intervention in reducing impact as well as the value of WGS in understanding outbreaks. © 2022 The Healthcare Infection Society

17.
Microbiol Spectr ; : e0282622, 2023 Feb 14.
Article in English | MEDLINE | ID: covidwho-2242851

ABSTRACT

Outbreak strains of Mycobacterium tuberculosis are promising candidates as targets in the search for intrinsic determinants of transmissibility, as they are responsible for many cases with sustained transmission; however, the use of low-resolution typing methods and restricted geographical investigations represent flaws in assessing the success of long-lived outbreak strains. We can now address the nature of outbreak strains by combining large genomic data sets and phylodynamic approaches. We retrospectively sequenced the whole genome of representative samples assigned to an outbreak circulating in the Canary Islands (the GC strain) since 1993, which accounts for ~20% of local tuberculosis cases. We selected a panel of specific single nucleotide polymorphism (SNP) markers for an in-silico search for additional outbreak-related sequences within publicly available tuberculosis genomic data. Using this information, we inferred the origin, spread, and epidemiological parameters of the GC strain. Our approach allowed us to accurately trace the historical and more recent dispersion of the GC strain. We provide evidence of a highly successful nature within the Canarian archipelago but limited expansion abroad. Estimation of epidemiological parameters from genomic data disagree with a distinctive biology of the GC strain. With the increasing availability of genomic data allowing for the accurate inference of strain spread and critical epidemiological parameters, we can now revisit the link between Mycobacterium tuberculosis genotypes and transmission, as is routinely carried out for SARS-CoV-2 variants of concern. We demonstrate that social determinants rather than intrinsically higher bacterial transmissibility better explain the success of the GC strain. Importantly, our approach can be used to trace and characterize strains of interest worldwide. IMPORTANCE Infectious disease outbreaks represent a significant problem for public health. Tracing outbreak expansion and understanding the main factors behind emergence and persistence remain critical to effective disease control. Our study allows researchers and public health authorities to use Whole-Genome Sequencing-based methods to trace outbreaks, and shows how available epidemiological information helps to evaluate the factors underpinning outbreak persistence. Taking advantage of all the freely available information placed in public repositories, researchers can accurately establish the expansion of an outbreak beyond original boundaries, and determine the potential risk of a strain to inform health authorities which, in turn, can define target strategies to mitigate expansion and persistence. Finally, we show the need to evaluate strain transmissibility in different geographic contexts to unequivocally associate spread to local or pathogenic factors, an important lesson taken from genomic surveillance of SARS-CoV-2.

18.
Mycoses ; 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2239811

ABSTRACT

BACKGROUND: The aetiology of the major outbreak of COVID-19-associated mucormycosis (CAM) in India in spring 2021 remains incompletely understood. Herein, we provide a multifaceted and multi-institutional analysis of clinical, pathogen-related, environmental and healthcare-related factors during CAM outbreak in the metropolitan New Delhi area. METHODS: We reviewed medical records of all patients diagnosed with biopsy-proven CAM (n = 50) at 7 hospitals in the New Delhi, and NCR area in April-June 2021. Two multivariate logistic regression models were used to compare clinical characteristics of CAM cases with COVID-19-hospitalised contemporary patients as controls (n = 69). Additionally, meteorological parameters and mould spore concentrations in outdoor air were analysed. Selected hospital fomites were cultured. Mucorales isolates from CAM patients were analysed by ITS sequencing and whole-genome sequencing (WGS). RESULTS: Independent risk factors for CAM identified by multivariate analysis were previously or newly diagnosed diabetes mellitus, active cancer and severe COVID-19 infection. Supplemental oxygen, remdesivir therapy and ICU admission for COVID-19 were associated with reduced CAM risk. The CAM incidence peak was preceded by an uptick in environmental spore concentrations in the preceding 3-4 weeks that correlated with increasing temperature, high evaporation and decreasing relative humidity. Rhizopus was the most common genus isolated, but we also identified two cases of the uncommon Mucorales, Lichtheimia ornata. WGS found no clonal population of patient isolates. No Mucorales were cultured from hospital fomites. CONCLUSIONS: An intersection of host and environmental factors contributed to the emergence of CAM. Surrogates of access to advanced COVID-19 treatment were associated with lower CAM risk.

19.
Progress in Biochemistry and Biophysics ; 49(12):2253-2265, 2022.
Article in English | Web of Science | ID: covidwho-2229873

ABSTRACT

The2022Nobel Prize in Physiology or Medicine was awarded to Swedish biologist Svante Paabo forhis decisive contribution to paleoanthropogenomics and human origins.There are various theories about theorigin of human beings,and the current mainstream view is:out of the African doctrine.In other words,ancienthumans had about three times of migrations.The first time wasHomo erectus,the second was Neanderthals andDenisovans,and the third was the ancestors of modern humans.All migrated from Africa to Eurasia.Whilepioneering a new discipline,paleoanthropogenomics,Svante Paabo has been refining the"Out of Africa Theory".With the help of various biological techniques,he delved into the origin of human beings from the perspective ofgenomics and found that some genetic imprints from ancient humans were retained in our bodies.For example,the STAT2gene and TLR gene associated with immunity,the EPAS1gene that contributes to hypoxic respirationand the six genes of chromosome3are highly positively correlated with the incidence of COVID-19.Thisresearch means that we can go back to the root of certain diseases,rather than limiting our eyes to the genesthemselves,and exploring where a gene comes from will be a new way of studying diseases.We summarized hisinnovations in related biotechnology in the process of research,his exploration of ancient humans based onmitochondrial and nuclear genes and related results,and introduced some genes derived from ancient humans andtheir related information

20.
J Med Virol ; 95(2): e28564, 2023 02.
Article in English | MEDLINE | ID: covidwho-2233781

ABSTRACT

New variants and genetic mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome can only be identified using accurate sequencing methods. Single molecule real-time (SMRT) sequencing has been used to characterize Alpha and Delta variants, but not Omicron variants harboring numerous mutations in the SARS-CoV-2 genome. This study assesses the performance of a target capture SMRT sequencing protocol for whole genome sequencing (WGS) of SARS-CoV-2 Omicron variants and compared it to that of an amplicon SMRT sequencing protocol optimized for Omicron variants. The failure rate of the target capture protocol (6%) was lower than that of the amplicon protocol (34%, p < 0.001) on our data set, and the median genome coverage with the target capture protocol (98.6% [interquartile range (IQR): 86-99.4]) was greater than that with the amplicon protocol (76.6% [IQR: 66-89.6], [p < 0.001]). The percentages of samples with >95% whole genome coverage were 64% with the target capture protocol and 19% with the amplicon protocol (p < 0.05). The clades of 96 samples determined with both protocols were 93% concordant and the lineages of 59 samples were 100% concordant. Thus, target capture SMRT sequencing appears to be an efficient method for WGS, genotyping and detecting mutations of SARS-CoV-2 Omicron variants.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL