Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Emerg Infect Dis ; 29(4): 862-865, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36958011

ABSTRACT

To assess dynamics of SARS-CoV-2 in Greater Accra Region, Ghana, we analyzed SARS-CoV-2 genomic sequences from persons in the community and returning from international travel. The Accra Metropolitan District was a major origin of virus spread to other districts and should be a primary focus for interventions against future infectious disease outbreaks.

2.
Front Public Health ; 11: 1095202, 2023.
Article in English | MEDLINE | ID: mdl-36935725

ABSTRACT

Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Latin America/epidemiology , Pandemics , Genotype
3.
Viruses, v. 15, n. 2, 327, jan. 2023
Article in English | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4824

ABSTRACT

São Paulo is the financial center of Brazil, with a population of over 12 million, that receives travelers from all over the world for business and tourism. It was the first city in Brazil to report a case of COVID-19 that rapidly spread across the city despite the implementation of the restriction measures. Despite many reports, much is still unknown regarding the genomic diversity and transmission dynamics of this virus in the city of São Paulo. Thus, in this study, we provide a retrospective overview of the COVID-19 epidemic in São Paulo City, Southeastern, Brazil, by generating a total of 9995 near-complete genome sequences from all the city’s different macro-regions (North, West, Central, East, South, and Southeast). Our analysis revealed that multiple independent introduction events of different variants (mainly Gamma, Delta, and Omicron) occurred throughout time. Additionally, our estimates of viral movement within the different macro-regions further suggested that the East and the Southeast regions were the largest contributors to the Gamma and Delta viral exchanges to other regions. Meanwhile, the North region had a higher contribution to the dispersion of the Omicron variant. Together, our results reinforce the importance of increasing SARS-CoV-2 genomic monitoring within the city and the country to track the real-time evolution of the virus and to detect earlier any eventual emergency of new variants of concern that could undermine the fight against COVID-19 in Brazil and worldwide.

4.
Emerg Infect Dis ; 29(4): 855-857, 2023 04.
Article in English | MEDLINE | ID: mdl-36878014

ABSTRACT

We reconstructed the SARS-CoV-2 epidemic caused by Omicron variant in Puerto Rico by sampling genomes collected during October 2021-May 2022. Our study revealed that Omicron BA.1 emerged and replaced Delta as the predominant variant in December 2021. Increased transmission rates and a dynamic landscape of Omicron sublineage infections followed.


Subject(s)
COVID-19 , Epidemics , Humans , Puerto Rico/epidemiology , SARS-CoV-2/genetics , COVID-19/epidemiology
5.
Sci Total Environ ; 874: 162564, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36870482

ABSTRACT

Extended spectrum ß-lactamase (ESBL)-producing Enterobacterales has spread rapidly around the world, reaching remote areas. In this regard, wild birds that acquire ESBL producers from anthropogenically impacted areas can become reservoirs, contributing to further dissemination of antimicrobial-resistant bacteria categorized as critical priority pathogens to remote environments, during migration seasons. We have conducted a microbiological and genomic investigation on the occurrence and features of ESBL-producing Enterobacterales in wild birds from the remote Acuy Island, in the Gulf of Corcovado, at Chilean Patagonia. Strikingly, five ESBL-producing Escherichia coli were isolated from migratory and resident gulls. Whole-genome sequencing (WGS) analysis revealed the presence of two E. coli clones belonging to international sequence types (STs) ST295 and ST388, producing CTX-M-55 and CTX-M-1 ESBLs, respectively. Moreover, E. coli carried a wide resistome and virulome associated with human and animal infections. Phylogenomic analysis of global and publicly genomes of E. coli ST388 (n = 51) and ST295 (n = 85) clustered gulls isolates along to E. coli strains isolated from the environment, companion animal and livestock in the United States of America, within or close to the migratory route of Franklin's gull, suggesting a possible trans hemispheric movement of international clones of WHO critical priority ESBL producing pathogens.

6.
Euro Surveill ; 28(9)2023 Mar.
Article in English | MEDLINE | ID: mdl-36862099

ABSTRACT

BackgroundLateral flow antigen-detection rapid diagnostic tests (Ag-RDTs) for viral infections constitute a fast, cheap and reliable alternative to nucleic acid amplification tests (NAATs). Whereas leftover material from NAATs can be employed for genomic analysis of positive samples, there is a paucity of information on whether viral genetic characterisation can be achieved from archived Ag-RDTs.AimTo evaluate the possibility of retrieving leftover material of several viruses from a range of Ag-RDTs, for molecular genetic analysis.MethodsArchived Ag-RDTs which had been stored for up to 3 months at room temperature were used to extract viral nucleic acids for subsequent RT-qPCR, Sanger sequencing and Nanopore whole genome sequencing. The effects of brands of Ag-RDT and of various ways to prepare Ag-RDT material were evaluated.ResultsSARS-CoV-2 nucleic acids were successfully extracted and sequenced from nine different brands of Ag-RDTs for SARS-CoV-2, and for five of these, after storage for 3 months at room temperature. The approach also worked for Ag-RDTs for influenza virus (n = 3 brands), as well as for rotavirus and adenovirus 40/41 (n = 1 brand). The buffer of the Ag-RDT had an important influence on viral RNA yield from the test strip and the efficiency of subsequent sequencing.ConclusionOur finding that the test strip in Ag-RDTs is suited to preserve viral genomic material, even for several months at room temperature, and therefore can serve as source material for genetic characterisation could help improve global coverage of genomic surveillance for SARS-CoV-2 as well as for other viruses.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Belgium , Rapid Diagnostic Tests , COVID-19/diagnosis , SARS-CoV-2/genetics , Genomics , COVID-19 Testing
7.
New Microbiol ; 46(1): 1-8, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36853811

ABSTRACT

The study of characteristics, prevalence and patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is significant to monitor and define the status of the pandemic, helping to design and evaluate control strategies. In this setting, the continuous emergence of new variants and their dynamic of replacement underline the importance of implementing genomic epidemiology and phylogenetic methods for the molecular monitoring and surveillance of this new virus. The current profile of the pandemic can change rapidly when new variants emerge and spread, impacting epidemiology and public health in terms of prevention and treatment and making it necessary to develop new molecules and formulate vaccines. In this paper, we reviewed and synthesized the main studies on molecular genomics and phylogeny of SARS-CoV-2 during the pandemic, and highlighted their contributions to our understanding of this new emergent pathogen.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Phylogeny , Pandemics , COVID-19/epidemiology , Genomics
8.
Viruses ; 15(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36851541

ABSTRACT

São Paulo is the financial center of Brazil, with a population of over 12 million, that receives travelers from all over the world for business and tourism. It was the first city in Brazil to report a case of COVID-19 that rapidly spread across the city despite the implementation of the restriction measures. Despite many reports, much is still unknown regarding the genomic diversity and transmission dynamics of this virus in the city of São Paulo. Thus, in this study, we provide a retrospective overview of the COVID-19 epidemic in São Paulo City, Southeastern, Brazil, by generating a total of 9995 near-complete genome sequences from all the city's different macro-regions (North, West, Central, East, South, and Southeast). Our analysis revealed that multiple independent introduction events of different variants (mainly Gamma, Delta, and Omicron) occurred throughout time. Additionally, our estimates of viral movement within the different macro-regions further suggested that the East and the Southeast regions were the largest contributors to the Gamma and Delta viral exchanges to other regions. Meanwhile, the North region had a higher contribution to the dispersion of the Omicron variant. Together, our results reinforce the importance of increasing SARS-CoV-2 genomic monitoring within the city and the country to track the real-time evolution of the virus and to detect earlier any eventual emergency of new variants of concern that could undermine the fight against COVID-19 in Brazil and worldwide.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Brazil/epidemiology , Latin America , Retrospective Studies
9.
Viruses ; 15(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36851651

ABSTRACT

In Brazil, a yellow fever (YF) outbreak was reported in areas considered YF-free for decades. The low vaccination coverage and the increasing forest fragmentation, with the wide distribution of vector mosquitoes, have been related to yellow fever virus (YFV) transmission beyond endemic areas since 2016. Aiming to elucidate the molecular and phylogenetic aspects of YFV spread on a local scale, we generated 43 new YFV genomes sampled from humans, non-human primates (NHP), and primarily, mosquitoes from highly heterogenic areas in 15 localities from Rio de Janeiro (RJ) state during the YFV 2016-2019 outbreak in southeast Brazil. Our analysis revealed that the genetic diversity and spatial distribution of the sylvatic transmission of YFV in RJ originated from at least two introductions and followed two chains of dissemination, here named the YFV RJ-I and YFV RJ-II clades. They moved with similar dispersal speeds from the north to the south of the RJ state in parallel directions, separated by the Serra do Mar Mountain chain, with YFV RJ-I invading the north coast of São Paulo state. The YFV RJ-I clade showed a more significant heterogeneity across the entire polyprotein. The YFV RJ-II clade, with only two amino acid polymorphisms, mapped at NS1 (I1086V), present only in mosquitoes at the same locality and NS4A (I2176V), shared by all YFV clade RJ-II, suggests a recent clustering of YFV isolates collected from different hosts. Our analyses strengthen the role of surveillance, genomic analyses of YVF isolated from other hosts, and environmental studies into the strategies to forecast, control, and prevent yellow fever outbreaks.


Subject(s)
Culicidae , Yellow Fever , Animals , Yellow fever virus/genetics , Yellow Fever/epidemiology , Brazil/epidemiology , Phylogeny , Mosquito Vectors , Forests
10.
Viruses ; 15(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36851799

ABSTRACT

Brazil is one of the nations most affected by Coronavirus disease 2019 (COVID-19). The introduction and establishment of new virus variants can be related to an increase in cases and fatalities. The emergence of Omicron, the most modified SARS-CoV-2 variant, caused alarm for the public health of Brazil. In this study, we examined the effects of the Omicron introduction in Minas Gerais (MG), the second-most populous state of Brazil. A total of 430 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples from November 2021 to June 2022 from Belo Horizonte (BH) city were sequenced. These newly sequenced genomes comprise 72% of all previously available SARS-CoV-2 genomes for the city. Evolutionary analysis of novel viral genomes reveals that a great diversity of Omicron sublineages have circulated in BH, a pattern in-keeping with observations across Brazil more generally. Bayesian phylogeographic reconstructions indicate that this diversity is a product of a large number of international and national importations. As observed previously, São Paulo state is shown as a significant hub for viral spread throughout the country, contributing to around 70% of all viral Omicron introductions detected in MG.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Brazil/epidemiology , COVID-19/epidemiology , Bayes Theorem
11.
mSystems ; : e0128422, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847566

ABSTRACT

Large, open-source DNA sequence databases have been generated, in part, through the collection of microbial pathogens by swabbing surfaces in built environments. Analyzing these data in aggregate through public health surveillance requires digitization of the complex, domain-specific metadata that are associated with the swab site locations. However, the swab site location information is currently collected in a single, free-text, "isolation source", field-promoting generation of poorly detailed descriptions with various word order, granularity, and linguistic errors, making automation difficult and reducing machine-actionability. We assessed 1,498 free-text swab site descriptions that were generated during routine foodborne pathogen surveillance. The lexicon of free-text metadata was evaluated to determine the informational facets and the quantity of unique terms used by data collectors. Open Biological Ontologies (OBO) Foundry libraries were used to develop hierarchical vocabularies that are connected with logical relationships to describe swab site locations. 5 informational facets that were described by 338 unique terms were identified via content analysis. Term hierarchy facets were developed, as were statements (called axioms) about how the entities within these five domains are related. The schema developed through this study has been integrated into a publicly available pathogen metadata standard, facilitating ongoing surveillance and investigations. The One Health Enteric Package was available at NCBI BioSample, beginning in 2022. The collective use of metadata standards increases the interoperability of DNA sequence databases and enables large-scale approaches to data sharing and artificial intelligence as well as big-data solutions to food safety. IMPORTANCE The regular analysis of whole-genome sequence data in collections such as NCBI's Pathogen Detection Database is used by many public health organizations to detect outbreaks of infectious disease. However, isolate metadata in these databases are often incomplete and of poor quality. These complex, raw metadata must often be reorganized and manually formatted for use in aggregate analyses. These processes are inefficient and time-consuming, increasing the interpretative labor needed by public health groups to extract actionable information. The future use of open genomic epidemiology networks will be supported through the development of an internationally applicable vocabulary system with which swab site locations can be described.

12.
Int J Infect Dis ; 130: 38-41, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36842755

ABSTRACT

OBJECTIVES: To describe the epidemiology and impact of Omicron BR.2.1, an emergent SARS-CoV-2 Omicron BA.2.75 sublineage displaying high fitness compared to other cocirculating subvariants in New South Wales, Australia. METHODS: From September 01 to November 26, 2022, 4971 SARS-CoV-2 consensus genomes from unique patients were generated, and correlated with international travel and reinfection history, and admission to the intensive care unit. RESULTS: BR.2.1 became the predominant variant by late November, and was responsible for a significantly higher proportion of community-acquired cases during the study period (55.1% vs 38.4%, P < 0.001). Reinfections (defined as occurring between 6 and 24 weeks after a prior diagnosis of COVID-19) were significantly higher among BR.2.1 compared to non-BR.2.1 infected persons (17.0% vs 6.0%, P < 0.001). BR.2.1 cases were also significantly younger compared to non-BR.2.1 (median age 48 years (interquartile range [IQR] 32) vs 53 years (IQR 32), P = 0.004). The proportion of patients admitted to the intensive care unit with BR.2.1 was not significantly higher than other subvariants (2.3% vs 2.0%, P = 0.717). CONCLUSION: Having emerged locally within New South Wales, BR.2.1 caused a significant number of SARS-CoV-2 reinfections, but with disease severity comparable with other currently circulating lineages. Given its rapid rise in prevalence, BR.2.1 has the potential to become established internationally.

13.
Euro Surveill ; 28(8)2023 Feb.
Article in English | MEDLINE | ID: mdl-36820641

ABSTRACT

BackgroundSequencing of SARS-CoV-2 PCR-positive samples was introduced in Slovenia in January 2021. Our surveillance programme comprised three complementary schemes: (A) non-targeted sequencing of at least 10% of samples, (B) sequencing of samples positive after PCR screening for variants of concern (VOC) and (C) sequencing as per epidemiological indication.AimWe present the analysis of cumulative data of the non-targeted surveillance of SARS-CoV-2 and variant-dependent growth kinetics for the five most common variants in Slovenia for the first 9 months of 2021.MethodsSARS-CoV-2 PCR-positive samples, from January to September 2021, were selected for sequencing according to the national surveillance plan. Growth kinetics studies were done on Vero E6 cells.ResultsAltogether 15,175 genomes were sequenced and 64 variants were detected, of which three successively prevailed. Variant B.1.258.17 was detected in ca 80% of samples in January and was replaced, within 9 weeks, by the Alpha variant. The number of cases decreased substantially during the summer of 2021. However, the introduction of the Delta variant caused a fourth wave and completely outcompeted other variants. Other VOC were only detected in small numbers. Infection of Vero E6 cells showed higher replication rates for the variants Alpha and Delta, compared with B.1.258.17, B.1.258, and B.1.1.70, which dominated in Slovenia before the introduction of the Alpha and Delta variants.ConclusionInformation on SARS-CoV-2 variant diversity provided context to the epidemiological data of PCR-positive cases, contributed to control of the initial spread of known VOC and influenced epidemiological measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Epidemiology , Slovenia/epidemiology , SARS-CoV-2/genetics , COVID-19/epidemiology
14.
Sci Total Environ ; 873: 162209, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36796689

ABSTRACT

Monitoring of SARS-CoV-2 in wastewater (WW) is a promising tool for epidemiological surveillance, correlating not only viral RNA levels with the infection dynamics within the population, but also to viral diversity. However, the complex mixture of viral lineages in WW samples makes tracking of specific variants or lineages circulating in the population a challenging task. We sequenced sewage samples of 9 WW-catchment areas within the city of Rotterdam, used specific signature mutations from individual SARS-CoV-2 lineages to estimate their relative abundances in WW and compared them against those observed in clinical genomic surveillance of infected individuals between September 2020 and December 2021. We showed that especially for dominant lineages, the median of the frequencies of signature mutations coincides with the occurrence of those lineages in Rotterdam's clinical genomic surveillance. This, along with digital droplet RT-PCR targeting signature mutations of specific variants of concern (VOCs), showed that several VOCs emerged, became dominant and were replaced by the next VOC in Rotterdam at different time points during the study. In addition, single nucleotide variant (SNV) analysis provided evidence that spatio-temporal clusters can also be discerned from WW samples. We were able to detect specific SNVs in sewage, including one resulting in the Q183H amino acid change in the Spike gene, that was not captured by clinical genomic surveillance. Our results highlight the potential use of WW samples for genomic surveillance, increasing the set of epidemiological tools to monitor SARS-CoV-2 diversity.

15.
Biotechniques ; 74(2): 69-75, 2023 02.
Article in English | MEDLINE | ID: mdl-36794696

ABSTRACT

The global demand for rapid identification of circulating SARS-CoV-2 variants of concern has led to a shortage of commercial kits. Therefore, this study aimed to develop and validate a rapid, cost-efficient genome sequencing protocol to identify circulating SARS-CoV-2 (variants of concern). Sets of primers flanking the SARS-CoV-2 spike gene were designed, verified and then validated using 282 nasopharyngeal positive samples for SARS-CoV-2. Protocol specificity was confirmed by comparing these results with SARS-CoV-2 whole-genome sequencing of the same samples. Out of 282 samples, 123 contained the alpha variant, 78 beta and 13 delta, which were indicted using in-house primers and next-generation sequencing; the numbers of variants found were 100% identical to the reference genome. This protocol is easily adaptable for detection of emerging variants during the pandemic.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , DNA Primers , High-Throughput Nucleotide Sequencing , Mutation
16.
Cell Rep Med ; 4(2): 100943, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36791724

ABSTRACT

The chronic infection hypothesis for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant emergence is increasingly gaining credence following the appearance of Omicron. Here, we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral genome copies. During the infection, we find an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately 2-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution results in the emergence and persistence of at least three genetically distinct genotypes, suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, we track the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, providing an opportunity for the emergence of genetically divergent variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Persistent Infection , Genome, Viral , Genotype
17.
Microb Genom ; 9(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36752781

ABSTRACT

Oxford Nanopore Technologies (ONT) sequencing has rich potential for genomic epidemiology and public health investigations of bacterial pathogens, particularly in low-resource settings and at the point of care, due to its portability and affordability. However, low base-call accuracy has limited the reliability of ONT data for critical tasks such as antimicrobial resistance (AMR) and virulence gene detection and typing, serotype prediction, and cluster identification. Thus, Illumina sequencing remains the standard for genomic surveillance despite higher capital and running costs. We tested the accuracy of ONT-only assemblies for common applied bacterial genomics tasks (genotyping and cluster detection, implemented via Kleborate, Kaptive and Pathogenwatch), using data from 54 unique Klebsiella pneumoniae isolates. ONT reads generated via MinION with R9.4.1 flowcells were basecalled using three alternative models [Fast, High-accuracy (HAC) and Super-accuracy (SUP), available within ONT's Guppy software], assembled with Flye and polished using Medaka. Accuracy of typing using ONT-only assemblies was compared with that of Illumina-only and hybrid ONT+Illumina assemblies, constructed from the same isolates as reference standards. The most resource-intensive ONT-assembly approach (SUP basecalling, with or without Medaka polishing) performed best, yielding reliable capsule (K) type calls for all strains (100 % exact or best matching locus), reliable multi-locus sequence type (MLST) assignment (98.3 % exact match or single-locus variants), and good detection of acquired AMR genes and mutations (88-100 % correct identification across the various drug classes). Distance-based trees generated from SUP+Medaka assemblies accurately reflected overall genetic relationships between isolates. The definition of outbreak clusters from ONT-only assemblies was problematic due to inflation of SNP counts by high base-call errors. However, ONT data could be reliably used to 'rule out' isolates of distinct lineages from suspected transmission clusters. HAC basecalling + Medaka polishing performed similarly to SUP basecalling without polishing. Therefore, we recommend investing compute resources into basecalling (SUP model), wherever compute resources and time allow, and note that polishing is also worthwhile for improved performance. Overall, our results show that MLST, K type and AMR determinants can be reliably identified with ONT-only R9.4.1 flowcell data. However, cluster detection remains challenging with this technology.


Subject(s)
Klebsiella pneumoniae , Nanopores , Genomics , Klebsiella pneumoniae/genetics , Multilocus Sequence Typing , Reproducibility of Results , Whole Genome Sequencing/methods , Drug Resistance, Bacterial
18.
China CDC Wkly ; 4(50): 1136-1142, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36751558

ABSTRACT

Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is the dominant circulating strain worldwide. To assess the importation of SARS-CoV-2 variants in the mainland of China during the Omicron epidemic, the genomic surveillance data of SARS-CoV-2 from imported coronavirus disease 2019 (COVID-19) cases in the mainland of China during the first half of 2022 were analyzed. Methods: Sequences submitted from January to July 2022, with a collection date before June 30, 2022, were incorporated. The proportions of SARS-CoV-2 variants as well as the relationships between the origin and destination of each Omicron imported case were analyzed. Results: 4,946 sequences of imported cases were submitted from 27 provincial-level administrative divisions (PLADs), and the median submission interval was within 1 month after collection. In 3,851 Omicron sequences with good quality, 1 recombinant (XU) and 4 subvariants under monitoring (BA.4, BA.5, BA.2.12.1, and BA.2.13) were recorded, and 3 of them (BA.4, BA.5, and BA.2.12.1) caused local transmissions in the mainland of China later than that recorded in the surveillance. Omicron subvariants dominated in the first half of 2022 and shifted from BA.1 to BA.2 then to BA.4 and BA.5. The percentage of BA.2 in the imported SARS-CoV-2 surveillance data was far higher than that in the Global Initiative on Sharing All Influenza Data (GISAID). The imported cases from Hong Kong Special Administrative Region, China, accounted for 32.30% of Omicron cases sampled, and 98.71% of them were BA.2. Conclusions: The Omicron variant showed the intra-Omicron evolution in the first half of 2022, and all of the Omicron subvariants were introduced into the mainland of China multiple times from multiple different locations.

19.
Microb Genom ; 8(12)2022 12.
Article in English | MEDLINE | ID: mdl-36748556

ABSTRACT

Escherichia coli bloodstream infections are typically attributed to a limited number of lineages that carry virulence factors associated with invasiveness. In Nigeria, the identity of circulating clones is largely unknown and surveillance of their antimicrobial resistance has been limited. We verified and whole-genome sequenced 68 2016-2018 bloodstream E. coli isolates from three sentinel sites in South-Western Nigeria and susceptibility tested 67 of them. Resistance to antimicrobials commonly used in Nigeria was high, with 67 (100 %), 62 (92.5 %), 53 (79.1 %) and 37 (55.2 %) showing resistance to trimethoprim, ampicillin, ciprofloxacin and aminoglycosides, respectively. Thirty-five (51 %) isolates carried extended-spectrum ß-lactamase genes and 32 (91 %) of these were multidrug resistant. All the isolates were susceptible to carbapenems and colistin. The strain set included globally disseminated high-risk clones from sequence type (ST)12 (2), ST131 (12) and ST648 (4). Twenty-three (33.8 %) of the isolates clustered within two clades. The first of these consisted of ST131 strains, comprising O16:H5 and O25:H4 sub-lineages. The second was an ST10-ST167 complex clade comprising strains carrying O-antigen and capsular genes of likely Klebsiella origin, identical to those of avian pathogenic E. coli Sanji, and serotyped in silico as O89, O101 or ONovel32, depending on the tool used. Four temporally associated ST90 strains from one sentinel were closely related enough to suggest that at least some of them represented a retrospectively detected outbreak cluster. Our data implicate a broad repertoire of E. coli isolates associated with bloodstream infections in South-West Nigeria. Continued genomic surveillance is valuable for tracking clones of importance and for outbreak identification.


Subject(s)
Escherichia coli Infections , Sepsis , Humans , Escherichia coli , O Antigens/genetics , Nigeria/epidemiology , Retrospective Studies , Escherichia coli Infections/epidemiology , Hospitals
20.
Microb Genom ; 9(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748616

ABSTRACT

Pathogen genomics is a critical tool for public health surveillance, infection control, outbreak investigations as well as research. In order to make use of pathogen genomics data, they must be interpreted using contextual data (metadata). Contextual data include sample metadata, laboratory methods, patient demographics, clinical outcomes and epidemiological information. However, the variability in how contextual information is captured by different authorities and how it is encoded in different databases poses challenges for data interpretation, integration and their use/re-use. The DataHarmonizer is a template-driven spreadsheet application for harmonizing, validating and transforming genomics contextual data into submission-ready formats for public or private repositories. The tool's web browser-based JavaScript environment enables validation and its offline functionality and local installation increases data security. The DataHarmonizer was developed to address the data sharing needs that arose during the COVID-19 pandemic, and was used by members of the Canadian COVID Genomics Network (CanCOGeN) to harmonize SARS-CoV-2 contextual data for national surveillance and for public repository submission. In order to support coordination of international surveillance efforts, we have partnered with the Public Health Alliance for Genomic Epidemiology to also provide a template conforming to its SARS-CoV-2 contextual data specification for use worldwide. Templates are also being developed for One Health and foodborne pathogens. Overall, the DataHarmonizer tool improves the effectiveness and fidelity of contextual data capture as well as its subsequent usability. Harmonization of contextual information across authorities, platforms and systems globally improves interoperability and reusability of data for concerted public health and research initiatives to fight the current pandemic and future public health emergencies. While initially developed for the COVID-19 pandemic, its expansion to other data management applications and pathogens is already underway.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , SARS-CoV-2/genetics , Canada , Genomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL