Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Photochem Photobiol ; 2022.
Article in English | PubMed | ID: covidwho-2038178

ABSTRACT

Germicidal ultraviolet (UV) devices have been widely used for pathogen disinfection in water, air, and on food and surfaces. Emerging UV technologies, like the krypton chloride (KrCl*) excimer emitting at 222 nm, are rapidly gaining popularity due to their minimal adverse health effects compared to conventional UV lamps emitting at 254 nm, opening opportunities for UV disinfection in occupied public spaces. In this study, inactivation of seven bacteria and five viruses, including waterborne, foodborne, and respiratory pathogens, was determined in a thin-film aqueous solution using a filtered KrCl* excimer emitting primarily at 222 nm. Our results show that the KrCl* excimer can effectively inactivate all tested bacteria and viruses, with most microorganisms achieving more than 4-log (99.99%) reduction with a UV dose of 10 mJ/cm(2) . Compared to conventional UV lamps, KrCl* excimer exhibited better disinfection performance for viruses but was less effective for bacteria. The relationships between UV sensitivities at 222 nm and 254 nm for bacteria and viruses were evaluated using regression analysis, resulting in factors that could be used to estimate the KrCl* excimer disinfection performance from well-documented UV kinetics using conventional 254 nm UV lamps. This study provides fundamental information for pathogen disinfection when employing KrCl* excimers.

2.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 13.
Article in English | MEDLINE | ID: covidwho-2006155

ABSTRACT

In this work, novel imadazo[1,2-a]pyrazine derivatives were synthesized and evaluated as CDK9 inhibitors. The results of CDK9 assay showed that the derivatives with pyridin-4-yl in position 2 and benzyl in position 3 of imadazo[1,2-a]pyrazine 3c displayed the most potent CDK9 inhibitory activity with IC50 of 0.16 µM. The anti-proliferative effect of the new compounds was examined against breast cancer (MCF7), colorectal cancer (HCT116), and chronic myelogenous leukaemia (K652) cell lines. The data of MTT assay showed that the cytotoxic effect of the inhibitors is correlated to their inhibitory activity against CDK9. Compound 3c exhibited the most potent cytotoxicity effect with average IC50s of three cell lines of 6.66 µM. The drug likeness properties of 3c were predicated in silico and demonstrated that 3c have reasonable physiochemical and pharmacokinetic properties. Selected derivatives were assessed in antiviral assay against human coronavirus 229E. The results of this assay showed that the derivative with pyridin-4-yl in position 2 and cyclohexyl in position 3 of imadazo[1,2-a]pyrazine 3b exhibited the most potent anti-coronaviral activity with IC50 of 56.96 µM and selectivity index of 7.14. The target predication result revealed that 3b showed high affinity to protease enzyme. Docking studies of 3b with COVID-19 main protease was conducted and showed good binding affinity, which confirmed the in vitro assay data.

3.
Biomed J ; 2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1982649

ABSTRACT

This study characterizes the phylogenetic relatedness of non-SARS human coronaviruses (HCoVs) in southern Taiwan by sequencing the nucleocapsid (N), spike (S), and RNA-dependent RNA polymerase (RdRp) genes directly from ten HCoV PCR-positive respiratory samples collected during 2012-2013. In the N, S1, and RdRp phylogeny, HCoV-OC43 in one and three samples was clustered with genotypes F and G, respectively, and HCoV-OC43 in sample YC101/TWN/2013 represented a recombination event between genotypes F and G. Amino acid substitutions in the S1 protein of HCoV-OC43 were also identified. In the N phylogeny, HCoV-HKU1 in one and two samples clustered with genotypes A and B, respectively, and HCoV-229E in two samples was clustered with genogroup 6. The genotypes and genogroup detected here were in line with the prevalent phylogenetic lineages reported outside of Taiwan during the contemporary period. In summary, three species of non-SARS HCoVs with different genotypes cocirculated in the community, with genetic evolution observed in HCoV-OC43.

4.
Front Microbiol ; 13: 853410, 2022.
Article in English | MEDLINE | ID: covidwho-1952413

ABSTRACT

Human coronavirus HKU1 (HCoV-HKU1) is one of the four endemic coronaviruses. It has been suggested that there is a difference in incidence, with PCR-confirmed HCoV-NL63 and HCoV-OC43 infections occurring more commonly, whereas HCoV-HKU1 is the least seen. Lower incidence of HCoV-HKU1 infection has also been observed in serological studies. The current study aimed to investigate antibody dynamics during PCR-confirmed HCoV-HKU1 infections using serum collected during infection and 1 month later. We expressed a new HCoV-HKU1 antigen consisting of both the linker and carboxy-terminal domain of the viral nucleocapsid protein and implemented it in ELISA. We also applied a spike-based Luminex assay on serum samples from PCR-confirmed infections by the four endemic HCoVs. At least half of HCoV-HKU1-infected subjects consistently showed no antibody rise via either assay, and some subjects even exhibited substantial antibody decline. Investigation of self-reported symptoms revealed that HCoV-HKU1-infected subjects rated their illness milder than subjects infected by other HCoVs. In conclusion, HCoV-HKU1 infections reported in this study displayed atypical antibody dynamics and milder symptoms when compared to the other endemic HCoVs.

5.
Food Control ; 142: 109271, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1936421

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of the COVID-19 outbreaks, is transmitted by respiratory droplets and has become a life-threatening viral pandemic worldwide. The aim of this study was to evaluate the effects of different chemical (chlorine dioxide [ClO2] and peroxyacetic acid [PAA]) and physical (ultraviolet [UV]-C irradiation) inactivation methods on various food-contact surfaces (stainless steel [SS] and polypropylene [PP]) and foods (lettuce, chicken breast, and salmon) contaminated with human coronavirus 229E (HCoV-229E). Treatments with the maximum concentration of ClO2 (500 ppm) and PAA (200 ppm) for 5 min achieved >99.9% inactivation on SS and PP. At 200 ppm ClO2 for 1 min on lettuce, chicken breast, and salmon, the HCoV-229E titers were 1.19, 3.54, and 3.97 log10 TCID50/mL, respectively. Exposure (5 min) to 80 ppm PAA achieved 1.68 log10 reduction on lettuce, and 2.03 and 1.43 log10 reductions on chicken breast and salmon, respectively, treated with 1500 ppm PAA. In the carrier tests, HCoV-229E titers on food-contact surfaces were significantly decreased (p < 0.05) with increased doses of UV-C (0-60 mJ/cm2) and not detected at the maximum UV-C dose (Detection limit: 1.0 log10 TCID50/coupon). The UV-C dose of 900 mJ/cm2 proved more effective on chicken breast (>2 log10 reduction) than on lettuce and salmon (>1 log10 reduction). However, there were no quality changes (p > 0.05) in food samples after inactivation treatments except the maximum PAA concentration (5 min) and the UV-C dose (1800 mJ/cm2).

6.
Front Microbiol ; 13: 877813, 2022.
Article in English | MEDLINE | ID: covidwho-1928431

ABSTRACT

The pandemic caused by SARS-CoV-2 (SCoV-2) has impacted the world in many ways and the virus continues to evolve and produce novel variants with the ability to cause frequent global outbreaks. Although the advent of the vaccines abated the global burden, they were not effective against all the variants of SCoV-2. This trend warrants shifting the focus on the development of small molecules targeting the crucial proteins of the viral replication machinery as effective therapeutic solutions. The PLpro is a crucial enzyme having multiple roles during the viral life cycle and is a well-established drug target. In this study, we identified 12 potential inhibitors of PLpro through virtual screening of the FDA-approved drug library. Docking and molecular dynamics simulation studies suggested that these molecules bind to the PLpro through multiple interactions. Further, IC50 values obtained from enzyme-inhibition assays affirm the stronger affinities of the identified molecules for the PLpro. Also, we demonstrated high structural conservation in the catalytic site of PLpro between SCoV-2 and Human Coronavirus 229E (HCoV-229E) through molecular modelling studies. Based on these similarities in PLpro structures and the resemblance in various signalling pathways for the two viruses, we propose that HCoV-229E is a suitable surrogate for SCoV-2 in drug-discovery studies. Validating our hypothesis, Mefloquine, which was effective against HCoV-229E, was found to be effective against SCoV-2 as well in cell-based assays. Overall, the present study demonstrated Mefloquine as a potential inhibitor of SCoV-2 PLpro and its antiviral activity against SCoV-2. Corroborating our findings, based on the in vitro virus inhibition assays, a recent study reported a prophylactic role for Mefloquine against SCoV-2. Accordingly, Mefloquine may further be investigated for its potential as a drug candidate for the treatment of COVID.

7.
Cont Lens Anterior Eye ; : 101719, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1866979

ABSTRACT

PURPOSE: To assess the influence of contemporary contact lens (CL) materials on human coronavirus attachment and the influence of a rub and rinse step to remove these viruses. METHODS: The binding rates of HCoV-229E and HCoV-OC43 to eight soft CL materials and four rigid gas permeable materials were analyzed. The impact of a rub and rinse step to remove these viruses from all materials was examined. The efficacy of Biotrue (Bausch & Lomb), OPTI-FREE Puremoist (Alcon), Clear Care (Alcon) and cleadew (Ophtecs) to remove virus contamination from two representative soft lens materials (etafilcon A and lotrafilcon B) was also determined. RESULTS: Approximately 102 to 103 infectious viral particles were recovered from each CL material. Although some materials were more prone to coronavirus adhesion, contamination of both viral types was reduced to below the limit of quantification (LQ) from all materials using a simple saline rinse step. Exposure to Clear Care and cleadew reduced the number of infectious viral particles from both etafilcon A and lotrafilcon B to below the LQ, while for Biotrue and OPTI-FREE Puremoist, infectious viral particles were reduced to below the LQ only when additional rub and rinse steps were included. CONCLUSION: Human coronavirus contamination can be easily removed from CL surfaces. Although CL care products containing hydrogen peroxide and povidone-iodine efficiently removed virus contamination from CL surfaces without the need for a rub and rinse step, a full regimen including rub and rinse steps is crucial when using CL care products based on non-oxidative systems.

8.
Cell ; 185(13): 2279-2291.e17, 2022 06 23.
Article in English | MEDLINE | ID: covidwho-1866951

ABSTRACT

The isolation of CCoV-HuPn-2018 from a child respiratory swab indicates that more coronaviruses are spilling over to humans than previously appreciated. We determined the structures of the CCoV-HuPn-2018 spike glycoprotein trimer in two distinct conformational states and showed that its domain 0 recognizes sialosides. We identified that the CCoV-HuPn-2018 spike binds canine, feline, and porcine aminopeptidase N (APN) orthologs, which serve as entry receptors, and determined the structure of the receptor-binding B domain in complex with canine APN. The introduction of an oligosaccharide at position N739 of human APN renders cells susceptible to CCoV-HuPn-2018 spike-mediated entry, suggesting that single-nucleotide polymorphisms might account for viral detection in some individuals. Human polyclonal plasma antibodies elicited by HCoV-229E infection and a porcine coronavirus monoclonal antibody inhibit CCoV-HuPn-2018 spike-mediated entry, underscoring the cross-neutralizing activity among ɑ-coronaviruses. These data pave the way for vaccine and therapeutic development targeting this zoonotic pathogen representing the eighth human-infecting coronavirus.


Subject(s)
Coronavirus 229E, Human , Coronavirus Infections , Coronavirus , Animals , CD13 Antigens/chemistry , CD13 Antigens/metabolism , Cats , Cell Line , Coronavirus/metabolism , Coronavirus 229E, Human/metabolism , Dogs , Humans , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Swine
9.
J Virol ; 96(11): e0036422, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1854234

ABSTRACT

Effective broad-spectrum antivirals are critical to prevent and control emerging human coronavirus (hCoV) infections. Despite considerable progress made toward identifying and evaluating several synthetic broad-spectrum antivirals against hCoV infections, a narrow therapeutic window has limited their success. Enhancing the endogenous interferon (IFN) and IFN-stimulated gene (ISG) response is another antiviral strategy that has been known for decades. However, the side effects of pegylated type-I IFNs (IFN-Is) and the proinflammatory response detected after delayed IFN-I therapy have discouraged their clinical use. In contrast to IFN-Is, IFN-λ, a dominant IFN at the epithelial surface, has been shown to be less proinflammatory. Consequently, we evaluated the prophylactic and therapeutic efficacy of IFN-λ in hCoV-infected airway epithelial cells and mice. Human primary airway epithelial cells treated with a single dose of IFN-I (IFN-α) and IFN-λ showed similar ISG expression, whereas cells treated with two doses of IFN-λ expressed elevated levels of ISG compared to that of IFN-α-treated cells. Similarly, mice treated with two doses of IFN-λ were better protected than mice that received a single dose, and a combination of prophylactic and delayed therapeutic regimens completely protected mice from a lethal Middle East respiratory syndrome CoV (MERS-CoV) infection. A two-dose IFN-λ regimen significantly reduced lung viral titers and inflammatory cytokine levels with marked improvement in lung inflammation. Collectively, we identified an effective regimen for IFN-λ use and demonstrated the protective efficacy of IFN-λ in MERS-CoV-infected mice. IMPORTANCE Effective antiviral agents are urgently required to prevent and treat individuals infected with SARS-CoV-2 and other emerging viral infections. The COVID-19 pandemic has catapulted our efforts to identify, develop, and evaluate several antiviral agents. However, a narrow therapeutic window has limited the protective efficacy of several broad-spectrum and CoV-specific antivirals. IFN-λ is an antiviral agent of interest due to its ability to induce a robust endogenous antiviral state and low levels of inflammation. Here, we evaluated the protective efficacy and effective treatment regimen of IFN-λ in mice infected with a lethal dose of MERS-CoV. We show that while prophylactic and early therapeutic IFN-λ administration is protective, delayed treatment is detrimental. Notably, a combination of prophylactic and delayed therapeutic administration of IFN-λ protected mice from severe MERS. Our results highlight the prophylactic and therapeutic use of IFN-λ against lethal hCoV and likely other viral lung infections.


Subject(s)
Antiviral Agents , Coronavirus Infections , Interferons , Middle East Respiratory Syndrome Coronavirus , Animals , Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Humans , Interferons/pharmacology , Mice
10.
Virus Evol ; 8(1): veab110, 2022.
Article in English | MEDLINE | ID: covidwho-1816260

ABSTRACT

Zoonotic spillover of animal viruses into human populations is a continuous and increasing public health risk. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the global impact of emergence. Considering the history and diversity of coronaviruses (CoVs), especially in bats, SARS-CoV-2 will likely not be the last to spillover from animals into human populations. We sampled and tested wildlife in the Central African country Cameroon to determine which CoVs are circulating and how they relate to previously detected human and animal CoVs. We collected animal and ecological data at sampling locations and used family-level consensus PCR combined with amplicon sequencing for virus detection. Between 2003 and 2018, samples were collected from 6,580 animals of several different orders. CoV RNA was detected in 175 bats, a civet, and a shrew. The CoV RNAs detected in the bats represented 17 different genetic clusters, coinciding with alpha (n = 8) and beta (n = 9) CoVs. Sequences resembling human CoV-229E (HCoV-229E) were found in 40 Hipposideridae bats. Phylogenetic analyses place the human-derived HCoV-229E isolates closest to those from camels in terms of the S and N genes but closest to isolates from bats for the envelope, membrane, and RNA-dependent RNA polymerase genes. The CoV RNA positivity rate in bats varied significantly (P < 0.001) between the wet (8.2 per cent) and dry seasons (4.5 per cent). Most sampled species accordingly had a wet season high and dry season low, while for some the opposite was found. Eight of the suspected CoV species of which we detected RNA appear to be entirely novel CoV species, which suggests that CoV diversity in African wildlife is still rather poorly understood. The detection of multiple different variants of HCoV-229E-like viruses supports the bat reservoir hypothesis for this virus, with the phylogenetic results casting some doubt on camels as an intermediate host. The findings also support the previously proposed influence of ecological factors on CoV circulation, indicating a high level of underlying complexity to the viral ecology. These results indicate the importance of investing in surveillance activities among wild animals to detect all potential threats as well as sentinel surveillance among exposed humans to determine emerging threats.

11.
Pathogens ; 11(4)2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1792582

ABSTRACT

BACKGROUND: Given that reports have suggested SARS-CoV-2 can be transmitted via conjunctiva, the ability of contact lens (CL) care products to reduce the infectiousness of two seasonal human coronavirus (HCoV) (HCoV-229E and HCoV-OC43) surrogates for SARS-CoV-2 was investigated. METHODS: Biotrue and Boston Simplus (Bausch&Lomb), OPTI-FREE Puremoist and Clear Care (Alcon), and cleadew and cleadew GP (Ophtecs) were tested. Their ability to inactivate HCoV was evaluated using contact times of 4 and 6 h as well as 1% and 10% of virus inoculum. RESULTS: Non-oxidative systems (Biotrue, Boston Simplus, and OPTI-FREE) did not exhibit a significant log10 reduction compared to controls for the two viral strains for either incubation time (all p > 0.05) when 10% tests were performed. For the 1% test, while Boston Simplus and OPTI-FREE exhibited a significant log10 reduction of both HCoV-229E (after 6 h) and HCoV-OC43 (after either 4 or 6 h incubation), those products showed less than 1 log10 reduction of the two infectious viruses. Oxidative systems based on hydrogen peroxide or povidone-iodine showed a significant log10 reduction compared with the controls for both HCoV-229E and HCoV-OC43 in all tested conditions (all p < 0.01). Clear Care led to virus inactivation to below the limit of quantification for tests performed with 1% of inoculum after 6 h incubation, while cleadew and cleadew GP led to inactivation of the two viruses to below the limit of quantification in all tested conditions. CONCLUSION: Oxidative CL disinfection systems showed significant virucidal activity against HCoV-229E and HCoV-OC43, while non-oxidative systems showed minimal ability to inactivate the HCoV species examined.

12.
Viruses ; 14(3)2022 03 09.
Article in English | MEDLINE | ID: covidwho-1732253

ABSTRACT

Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Bayes Theorem , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Pandemics , Seasons , Workload
13.
J Mol Liq ; 351: 118633, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1720649

ABSTRACT

The coronaviridae family has generated highly virulent viruses, including the ones responsible for three major pandemics in last two decades with SARS in 2002, MERS outbreak in 2012 and the current nCOVID19 crisis that has turned the world breadthless. Future outbreaks are also a plausible threat to mankind. As computational biologists, we are committed to address the need for a universal vaccine that can deter all these pathogenic viruses in a single shot. Notably, the spike proteins present in all these viruses function as credible PAMPs that are majorly sensed by human TLR4 receptors. Our study aims to recognize the amino acid sequence(s) of the viral spike proteins that are precisely responsible for interaction with human TLR4 and to screen the immunogenic epitopes present in them to develop a multi-epitope multi-target chimeric vaccine against the coronaviruses. Molecular design of the constructed vaccine peptide is qualified in silico; additionally, molecular docking and molecular dynamics simulation studies collectively reveal strong and stable interactions of the vaccine construct with TLRs and MHC receptors. In silico cloning is performed for proficient expression in bacterial systems. In silico immune simulation of the vaccine indicates highly immunogenic nature of the vaccine construct without any allergic response. The present biocomputational study hereby innovates a vaccine candidate - AbhiSCoVac hypothesized as a potent remedy to combat all the virulent forms of coronaviruses.

14.
J Virol ; 96(4): e0195521, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1701123

ABSTRACT

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. IMPORTANCE Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus 229E, Human , Coronavirus Infections , Epitopes , Spike Glycoprotein, Coronavirus , Amino Acid Motifs , Animals , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Epitopes/genetics , Epitopes/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
Viruses ; 14(1)2022 01 08.
Article in English | MEDLINE | ID: covidwho-1614009

ABSTRACT

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Photosensitizing Agents/pharmacology , Virus Inactivation/drug effects , Animals , Antiviral Agents/radiation effects , Cell Line , Cell Survival/drug effects , Cricetinae , Emodin/pharmacology , Emodin/radiation effects , Humans , Light , Photosensitizing Agents/radiation effects , Plant Extracts/pharmacology , Plant Extracts/radiation effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Virion/drug effects
16.
J Ethnopharmacol ; 287: 114965, 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1587284

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Coronavirus and influenza virus infection seriously threaten human health. Cangma Huadu Granules (CMHD) is an in-hospital preparation composed of eight traditional Chinese medicines (TCM), which has been clinically used against COVID-19 in China and may be a promising candidate for the treatment of influenza. However, the role of its treatment urgently needs to be studied. AIM OF THE STUDY: To evaluate the therapeutic effects of CMHD on pneumonia induced by coronavirus (HCoV-229E) and influenza A virus (H1N1/FM1) in mice and explore its mechanism of anti-infection. MATERIALS AND METHODS: Mice were infected with HCoV-229E or H1N1/FM1 virus through the nasal cavity. CMHD (12.1, 6.05 and 3.03 g/kg/d) or the positive control drugs were administered intragastrically. The lung index and histopathological changes were used to evaluate the therapeutic effect of CMHD. The expression of TNF-α, IL-1ß, IL-6 and IL-4 in Serum and the proportion of CD4+ and CD8+ T lymphocytes in peripheral blood were detected to evaluate the anti-inflammatory and immune regulation effects of CMHD, respectively. Furthermore, the levels of p-NF-κBp65/ NF-κB p65, which was the key targets of the NF-κB pathway was analyzed. RESULTS: In HCoV-229E-induced pneumonia, the lung index was markedly reduced, and lung pathology was improved in mice that treated with CMHD (12.1, 6.05 g/kg/d). Meanwhile, the expression of TNF-α, IL-6 were obviously inhibited, but the expression of IL-4 was significantly increased in CMHD groups. Compared with the model group, CMHD could also markedly upregulate the level of CD4+ and CD8+. Furthermore, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. In H1N1-induced pneumonia, the lung index of mice in the CMHD (12.1 g/kg/d) treatment group was lower than that in the model group, and less inflammatory infiltration could be seen in the lung pathological. Moreover, CMHD could also obviously decrease the expression of TNF-α, IL-1ß, IL-6, but significantly increase the expression of IL-4. Except for that, CMHD could also markedly downregulate the level of CD4+ and upregulate the level of CD8+ compared with the model group. In addition, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. CONCLUSION: CMHD can significantly combats viral infections caused by HCoV-229E and H1N1, and the mechanism may be related to its multiple functions of anti-inflammatory, immunity regulating and inhibiting NF-κB signal transduction pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Medicine, Chinese Traditional/methods , Orthomyxoviridae Infections/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Coronavirus 229E, Human/drug effects , Cytokines/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Female , Immunity/drug effects , Male , Mice, Inbred BALB C , Mice, Inbred ICR , Pneumonia/drug therapy , Pneumonia/pathology , T-Lymphocytes/metabolism , Transcription Factor RelA/metabolism
17.
Phytomedicine ; 95: 153874, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1560696

ABSTRACT

BACKGROUND: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) pose a huge threat to human public health, no specific treatment is available. Jinzhen granule (JZ) is a traditional eight ingredients-Chinese medicine with prominent efficacy for treating viral-induced diseases. However, little is known about the antiviral effect and mechanism of JZ against SARS-CoV-2 and HCoV-229E. PURPOSE: This study aimed to reveal the antiviral effects of JZ against SARS-CoV-2 and HCoV-229E, and to further explore the underlying mechanisms regulating the host immune response. METHODS: The chromatographic separation of JZ was performed using a Shimadzu analytical high-performance liquid chromatograph with UV detection and Alltech ELSD 2000ES. We conducted cytopathic effect (CPE) and plaque reduction assays to evaluate the antiviral effect of JZ. A lethal human angiotensin converting enzyme 2 (hACE2) transgenic mouse model of SARS-CoV-2 was established to determine the protective effect of JZ on mortality and lung virus titers. Real-time quantitative PCR assays were used to analyze the expression of proinflammatory cytokines in vitro and in vivo. Western blotting was further performed to determine the activities on regulating the nuclear factor kappa B (NF-κB)/MAPK pathway. Finally, mitochondrial membrane potential assays, flow cytometry analysis and western blotting were used to assess the anti-apoptotic potency toward HCoV-229E infection. RESULTS: The results showed that 13 chemical components were identified and five peaks were determined and quantitated (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g). We found that JZ exerted inhibitory potency against SARS-CoV-2 and HCoV-229E in vitro by using CPE and plaque reduction assays, and it was further found that JZ protected mice infected by SARS-CoV-2 from death and inhibited lung virus titers. JZ also significantly decreased the induction of inflammatory cytokines (IL-1α, IL-6, CCL-5 and MIP-1ß), similar to the observed in vitro effect. Moreover, JZ suppressed the release of inflammatory cytokines in vitro and it decreased the protein expression of p-p38 MAPK, p-JNK, p-NF-κB p65 and p-IκBα induced by HCoV-229E and increased the expression of IκBα. Notably, JZ significantly protected HCoV-229E-infected Huh-7 cells from mitochondrial damage and decreased apoptotic cells. The activation of the mitochondria-mediated apoptotic pathway was inhibited by JZ, as shown by the reduced expression of cleaved caspase-9, caspase-3 and p-PARP. CONCLUSIONS: In conclusion, JZ (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g) exhibited antiviral activities against SARS-CoV-2 and HCoV-229E by regulating the NF-κB/MAPK pathway and the mitochondria-mediated apoptotic pathway. These findings demonstrated the efficacy of JZ against CoVs and suggested JZ treatment as a novel clinical therapeutic strategy for COVID-19.


Subject(s)
Antiviral Agents , Coronavirus 229E, Human , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19 , Coronavirus 229E, Human/drug effects , Humans , MAP Kinase Signaling System , Mice , NF-kappa B
18.
Sci Total Environ ; 812: 151434, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1500243

ABSTRACT

Wastewater surveillance of SARS-CoV-2 has become a promising tool to estimate population-level changes in community infections and the prevalence of COVID-19 disease. Although many studies have reported the detection and quantification of SARS-CoV-2 in wastewater, remarkable variation remains in the methodology. In this study, we validated a molecular testing method by concentrating viruses from wastewater using ultrafiltration and detecting SARS-CoV-2 using one-step RT-qPCR assay. The following parameters were optimized including sample storage condition, wastewater pH, RNA extraction and RT-qPCR assay by quantification of SARS-CoV-2 or spiked human coronavirus strain 229E (hCoV-229E). Wastewater samples stored at 4 °C after collection showed significantly enhanced detection of SARS-CoV-2 with approximately 2-3 PCR-cycle threshold (Ct) values less when compared to samples stored at -20 °C. Pre-adjustment of the wastewater pH to 9.6 to aid virus desorption followed by pH readjustment to neutral after solid removal significantly increased the recovery of spiked hCoV-229E. Of the five commercially available RNA isolation kits evaluated, the MagMAX-96 viral RNA isolation kit showed the best recovery of hCoV-229E (50.1 ± 20.1%). Compared with two-step RT-qPCR, one-step RT-qPCR improved sensitivity for SARS-CoV-2 detection. Salmon DNA was included for monitoring PCR inhibition and pepper mild mottle virus (PMMoV), a fecal indicator indigenous to wastewater, was used to normalize SARS-CoV-2 levels in wastewater. Our method for molecular detection of SARS-CoV-2 in wastewater provides a useful tool for public health surveillance of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Waste Water , Wastewater-Based Epidemiological Monitoring
19.
Microbiol Spectr ; 9(2): e0053721, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1476396

ABSTRACT

UV light, more specifically UV-C light at a wavelength of 254 nm, is often used to disinfect surfaces, air, and liquids. In early 2020, at the cusp of the COVID-19 pandemic, UV light was identified as an efficient means of eliminating coronaviruses; however, the variability in published sensitivity data is evidence of the need for experimental rigor to accurately quantify the effectiveness of this technique. In the current study, reliable and reproducible UV techniques have been adopted, including accurate measurement of light intensity, consideration of fluid UV absorbance, and confirmation of uniform dose delivery, including dose verification using an established biological target (T1UV bacteriophage) and a resistant recombinant virus (baculovirus). The experimental results establish the UV sensitivity of SARS-CoV-2, HCoV-229E, HCoV-OC43, and mouse hepatitis virus (MHV) and highlight the potential for surrogate viruses for disinfection studies. All four coronaviruses were found to be easily inactivated by 254 nm irradiation, with UV sensitivities of 1.7, 1.8, 1.7, and 1.2 mJ/cm2/log10 reduction for SARS-CoV-2, HCoV-229E, HCoV-OC43, and MHV, respectively. Similar UV sensitivities for these species demonstrate the capacity for HCoV-OC43, HCoV-229E, and MHV to be considered surrogates for SARS-CoV-2 in UV-inactivation studies, greatly reducing hazards and simplifying procedures for future experimental studies. IMPORTANCE Disinfection of SARS-CoV-2 is of particular importance due to the global COVID-19 pandemic. UV-C irradiation is a compelling disinfection technique because it can be applied to surfaces, air, and water and is commonly used in drinking water and wastewater treatment facilities. UV inactivation depends on the dose received by an organism, regardless of the intensity of the light source or the optical properties of the medium in which it is suspended. The 254 nm irradiation sensitivity was accurately determined using benchmark methodology and a collimated beam apparatus for four coronaviruses (SARS-CoV-2, HCoV-229E, HCoV-OC43, and MHV), a surrogate indicator organism (T1UV), and a resistant recombinant virus (baculovirus vector). Considering the light distribution across the sample surface, the attenuation of light intensity with fluid depth, the optical absorbance of the fluid, and the sample uniformity due to mixing enable accurate measurement of the fundamental inactivation kinetics and UV sensitivity.


Subject(s)
Coronavirus 229E, Human/radiation effects , Coronavirus OC43, Human/radiation effects , Murine hepatitis virus/radiation effects , SARS-CoV-2/radiation effects , Ultraviolet Rays , Animals , Baculoviridae/radiation effects , COVID-19/prevention & control , Cell Line , Chlorocebus aethiops , Disinfection/methods , Humans , Vero Cells
20.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 26.
Article in English | MEDLINE | ID: covidwho-1438692

ABSTRACT

Since December 2019, the COVID-19 pandemic has affected more than 200 million individuals around the globe and caused millions of deaths. Although there are now multiple vaccines for SARS-CoV-2, their efficacy may be limited by current and future viral mutations. Therefore, effective antiviral compounds are an essential component to win the battle against the family of coronaviruses. Ginkgolic Acid (GA) is a pan-antiviral molecule with proven effective in vitro and in vivo activity. We previously demonstrated that GA inhibits Herpes Simplex Virus 1 (HSV-1) by disrupting viral structure, blocking fusion, and inhibiting viral protein synthesis. Additionally, we reported that GA displays broad-spectrum fusion inhibition encompassing all three classes of fusion proteins, including those of HIV, Ebola, influenza A, and Epstein Barr virus. Here, we report that GA exhibited potent antiviral activity against Human Coronavirus strain 229E (HCoV-229E) infection of human epithelial lung cells (MRC-5). GA significantly reduced progeny virus production, expression of viral proteins, and cytopathic effects (CPE). Furthermore, GA significantly inhibited HCoV-229E even when added post-infection. In light of our findings and the similarities of this family of viruses, GA holds promising potential as an effective antiviral treatment for SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL