Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Sci Total Environ ; 809: 151169, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1475056


Wastewater surveillance for SARS-CoV-2 RNA has been a successful indicator of COVID-19 outbreaks in populations prior to clinical testing. However, this has been mostly conducted in high-income countries, which means there is a dearth of performance investigations in low- and middle-income countries with different socio-economic settings. This study evaluated the applicability of SARS-CoV-2 RNA monitoring in wastewater (n = 132) to inform COVID-19 infection in the city of Bangkok, Thailand using CDC N1 and N2 RT-qPCR assays. Wastewater influents (n = 112) and effluents (n = 20) were collected from 19 centralized wastewater treatment plants (WWTPs) comprising four large, four medium, and 11 small WWTPs during seven sampling events from January to April 2021 prior to the third COVID-19 resurgence that was officially declared in April 2021. The CDC N1 assay showed higher detection rates and mostly lower Ct values than the CDC N2. SARS-CoV-2 RNA was first detected at the first event when new reported cases were low. Increased positive detection rates preceded an increase in the number of newly reported cases and increased over time with the reported infection incidence. Wastewater surveillance (both positive rates and viral loads) showed strongest correlation with daily new COVID-19 cases at 22-24 days lag (Spearman's Rho = 0.85-1.00). Large WWTPs (serving 432,000-580,000 of the population) exhibited similar trends of viral loads and new cases to those from all 19 WWTPs, emphasizing that routine monitoring of the four large WWTPs could provide sufficient information for the city-scale dynamics. Higher sampling frequency at fewer sites, i.e., at the four representative WWTPs, is therefore suggested especially during the subsiding period of the outbreak to indicate the prevalence of COVID-19 infection, acting as an early warning of COVID-19 resurgence.

COVID-19 , Water Purification , Humans , RNA, Viral , SARS-CoV-2 , Thailand/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring
Food Environ Virol ; 14(4): 417-420, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1300533


In the present study, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was monitored in environmental samples from rural and vulnerable areas (a presidio, worker accommodation units, and river waters upstream and downstream of a rural community) from Minas Gerais State region, Southern Brazil, in August 2020. The sampling was performed prior to official declaration of the coronavirus disease (COVID-19) cases in those sites. SARS-CoV-2 RNA was detected in the presidio and workers accommodation units (3.0 × 104 virus genome copies (GC)/mL and 4.3 × 104 GC/mL of sewage, respectively). While SARS-CoV-2 was not detected in the river water upstream of the rural community, SARS-CoV-2 RNA was detected in downstream river waters (1.1 × 102 SARS-CoV-2 GC/mL). The results obtained in this study highlight the utility of SARS-CoV-2 monitoring in wastewater and human sewage as a non-invasive early warning tool to support health surveillance in vulnerable and remote areas, particularly in development countries.

COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Sewage , RNA, Viral/genetics , Brazil/epidemiology , COVID-19/epidemiology , Water
Sci Total Environ ; 778: 146198, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1121857


Human sewage from Florianopolis (Santa Catarina, Brazil) was analyzed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) from October 2019 until March 2020. Twenty five ml of sewage samples were clarified and viruses concentrated using a glycine buffer method coupled with polyethylene glycol precipitation, and viral RNA extracted using a commercial kit. SARS-CoV-2 RNA was detected by RT-qPCR using oligonucleotides targeting N1, S and two RdRp regions. The results of all positive samples were further confirmed by a different RT-qPCR system in an independent laboratory. S and RdRp amplicons were sequenced to confirm identity with SARS-CoV-2. Genome sequencing was performed using two strategies; a sequence-independent single-primer amplification (SISPA) approach, and by direct metagenomics using Illumina's NGS. SARS-CoV-2 RNA was detected on 27th November 2019 (5.49 ± 0.02 log10 SARS-CoV-2 genome copies (GC) L-1), detection being confirmed by an independent laboratory and genome sequencing analysis. The samples in the subsequent three events were positive by all RT-qPCR assays; these positive results were also confirmed by an independent laboratory. The average load was 5.83 ± 0.12 log10 SARS-CoV-2 GC L-1, ranging from 5.49 ± 0.02 log10 GC L-1 (27th November 2019) to 6.68 ± 0.02 log10 GC L-1 (4th March 2020). Our findings demonstrate that SARS-CoV-2 was likely circulating undetected in the community in Brazil since November 2019, earlier than the first reported case in the Americas (21st January 2020).

COVID-19 , RNA, Viral , Brazil , Humans , SARS-CoV-2 , Sewage