ABSTRACT
Since the emergence of the SARS-CoV-2 Omicron variant, many issues have arisen. We report SARS-CoV-2 vaccinations, SARS-CoV-2 cases and COVID-19 outcomes in Greece during weeks 2-26 of 2021 (Alpha variant period), weeks 27-51 of 2021 (Delta variant period) and week 51 of 2021 to week 27 of 2022 (Omicron variant period). The average weekly cases were higher during the Omicron period vs. the Delta (25,354.17 cases/week) and Alpha periods (11,238.48 cases/week). The average weekly vaccinations were lower in the Omicron period (26,283.69/week) than in the Alpha and Delta period. Joinpoint regression analysis identified that the trend of SARS-CoV-2 cases increased by 88.5% during the rise of the Omicron wave in Greece. The trend of the intensive care unit (ICU) admissions related to COVID-19 decreased by 5.0% immediately after the rise of Omicron while the trend of COVID-19-related deaths decreased by 8.1% from the 5th week of the Omicron wave until the end of the study. For vaccinations, an increasing trend of 8.3% was observed in the first half of 2021 (weeks 18-25/2021), followed by a decreasing trend in weeks 26-43/2021. For the weeks before and during the early rise of Omicron (44/2021-1/2022), we identified an increasing trend of 10.7% and for weeks 2-27/2022 we observed a decreasing trend of 18.1%. Unfortunately, we do not have available data about the vaccination status of the SARS-CoV-2 cases, ICU admissions or deaths. Our findings suggest that the Omicron variant is associated with increased transmissibility and reduced morbidity and mortality despite the previous increase in the trend of SARS-CoV-2 vaccinations.
ABSTRACT
Omicron variants have been classified as Variants of Concern (VOC) by the World Health Organization (WHO) ever since they first emerged as a result of a significant mutation in this variant, which showed to have an impact on transmissibility and virulence of the virus, as evidenced by the ongoing modifications in the SARS-CoV-2 virus. As a global pandemic, the Omicron variant also spread among the Kurdish population. This study aimed to analyze different strains from different cities of the Kurdistan region of Iraq to show the risk of infection and the impact of the various mutations on immune responses and vaccination. A total of 175 nasopharyngeal/oropharyngeal specimens were collected at West Erbil Emergency Hospital and confirmed for SARS-CoV-2 infection by RT-PCR. The genomes of the samples were sequenced using the Illumina COVID-Seq Method. The genome analysis was established based on previously published data in the GISAID database and compared to previously detected mutations in the Omicron variants, and that they belong to the BA.1 lineage and include most variations determined in other studies related to transmissibility, high infectivity and immune escape. Most of the mutations were found in the RBD (receptor binding domain), the region related to the escape from humoral immunity. Remarkably, these point mutations (G339D, S371L, S373P, S375F, T547K, D614G, H655Y, N679K and N969K) were also determined in this study, which were unique, and their impact should be addressed more. Overall, the Omicron variants were more contagious than other variants. However, the mortality rate was low, and most infectious cases were asymptomatic. The next step should address the potential of Omicron variants to develop the next-generation COVID-19 vaccine.
ABSTRACT
The epidemiology of COVID-19 has dramatically changed since the beginning of the pandemic as we witnessed significant changes in transmissibility and pathogenicity with the emergence of SARS-CoV-2 variants of concern (VoCs). Here I present and comment on working hypotheses about the evolutionary dynamics of the emergence of VoCs. © 2022 Elsevier Ltd
ABSTRACT
Background and aims: Chronic liver disease (CLD) patients and liver transplant (LT) recipients have an increased risk of morbidity and mortality from coronavirus disease 2019 (COVID-19). The immunogenicity of COVID-19 vaccines in CLD patients and LT recipients is poorly understood. The present study aimed to evaluate the immunogenicity of COVID-19 vaccines in CLD patients and LT recipients. Methods: We searched electronic databases for eligible studies. Two reviewers independently conducted the literature search, extracted the data and assessed the risk of bias of included studies. The rates of detectable immune response were pooled from single-arm studies. For comparative studies, we compared the rates of detectable immune response between patients and healthy controls. The meta-analysis was conducted using the Stata software with a random-effects model. Results: In total, 19 observational studies involving 4191 participants met the inclusion criteria. The pooled rates of detectable humoral immune response after two doses of COVID-19 vaccination in CLD patients and LT recipients were 95% (95% confidence interval [CI] = 88%–99%) and 66% (95% CI = 57%–74%) respectively. After two doses of vaccination, the humoral immune response rate was similar in CLD patients and healthy controls (risk ratio [RR] = 0.96;95% CI = 0.90–1.02;p =.14). In contrast, LT recipients had a lower humoral immune response rate after two doses of vaccination than healthy controls (RR = 0.68;95% CI = 0.59–0.77;p <.01). Conclusions : Our meta-analysis demonstrated that COVID-19 vaccination induced strong humoral immune responses in CLD patients but poor humoral immune responses in LT recipients. © 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ABSTRACT
Lung cancer is one of the malignant tumors that seriously threaten human health worldwide, while the covid-19 virus has become people's nightmare after the coronavirus pandemic. There are too many similarities between cancer cells and viruses, one of the most significant is that both of them are our enemies. The strategy to take the advantage of the virus to beat cancer cells is called Oncolytic virotherapy. When immunotherapy represented by immune checkpoint inhibitors has made remarkable breakthroughs in the clinical practice of lung cancer, the induction of antitumor immunity from immune cells gradually becomes a rapidly developing and promising strategy of cancer therapy. Oncolytic virotherapy is based on the same mechanisms that selectively kill tumor cells and induce systemic anti-tumor immunity, but still has a long way to go before it becomes a standard treatment for lung cancer. This article provides a comprehensive review of the latest progress in oncolytic virotherapy for lung cancer, including the specific mechanism of oncolytic virus therapy and the main types of oncolytic viruses, and the combination of oncolytic virotherapy and existing standard treatments. It aims to provide new insights and ideas on oncolytic virotherapy for lung cancer. © 2022
ABSTRACT
Systemic sclerosis (SSc) is an autoimmune disease characterised by microvasculopathy, immune dysregulation, and skin and visceral organ fibrosis. Every year novel insights into the pathogenesis, organ involvement and treatment of this severe disease are published in the scientific community. In this review we report an overview of some of the most relevant contributions published in 2021.
ABSTRACT
Despite studies on the etiology of Kawasaki disease (KD) ongoing for half a century since its discovery, its cause has not yet been clearly identified. Although the clinical, epidemiological, and pathophysiological characteristics of KD are presumed to be closely related to infectious diseases, studies of various pathogens to identify its etiology have been actively conducted. To date, bacteria, fungi, and viruses have been investigated to determine the relationship between KD and infection, among which viruses have attracted the most attention. In particular, during the coronavirus disease 2019 pandemic, there were many reports in Europe of a sharp increase in cases of Kawasaki-like disease (KLD), while conflicting reports that the prevalence of KD decreased due to thorough "social distancing” or "wearing mask” in Asian countries drew more attention regarding the association between KD and viral infection. Therefore, the differential diagnosis of KD from KLD with these similar spectra has become a very important issue;simultaneously, research to solve questions about the association between KD and viral infections, including sudden acute respiratory syndrome coronavirus 2, is drawing attention again. Moreover, a new concept has emerged that immune responses occurring in patients with KD can be caused by the pathogen itself as well as host cells damaged by infection. This paper summarizes the research trends into KD etiology and related pathophysiology, especially its association with viral infections, and present future research tasks to increase our understanding of KD.
ABSTRACT
RBCs demonstrate immunomodulatory capabilities through the expression of nucleic acid sensors. However, little is known about bat RBCs, and no studies have examined the immune function of bat erythrocytes. In this study, we show that bat RBCs express the nucleic acid-sensing TLRs TLR7 and TLR9 and bind the nucleic acid ligands, ssRNA, and CpG DNA. Collectively, these data suggest that, like human RBCs, bat erythrocytes possess immune function and may be reservoirs for nucleic acids. These findings provide unique insight into bat immunity and may uncover potential mechanisms by which virulent pathogens of humans are concealed in bats.
ABSTRACT
Background and Purpose: It is a matter of research, whether children with immunodeficiencies are able to generate an effective immune response to prevent SARS-CoV-2 reinfection. This study aimed to evaluate and compare the seroconversion rates and changes of lymphocyte subsets during COVID-19 in immunocompetent children and those with secondary immunodeficiencies. Methods: In 55 children — 28 immunocompromised and 27 immunocompetent — hospitalized with confirmed SARS-CoV-2 infection, the level of IgG antibodies against the Spike protein was determined on two to three occasions. In those children from the study group whose immunosuppressive treatment did not alter during the study (n = 13) and in selected children from the control group (n = 11), flow cytometric evaluation of lymphocyte subsets was performed twice — 2 weeks and 3 months post-infection. Results: Seroconversion reached 96.3% in both studied groups;however, the immunocompromised cohort achieved lower titers of detectable anti-S antibodies. There was no correlation between seroconversion or titers of antibodies and the total number of lymphocytes or their subsets. In the immunocompetent cohort, we reported a significant decrease in NK cells during the infection. In this group and the entire study population, a positive correlation was noticed between the CD4 + /CD8 + T cell ratio and the severity of COVID-19 pneumonia. Conclusions: Children with secondary immunodeficiencies seroconvert in equal percentages but with a significantly lower titer of anti-S antibodies compared to their immunocompetent peers. The lower number of NK cells in the immunocompetent cohort may result from their participation in antiviral immunity, whereas reduced CD4 + /CD8 + T cell ratios among immunocompromised children may be a protective factor against a severe COVID-19. © 2022, The Author(s).
ABSTRACT
In this paper, a mathematical model with a standard incidence rate is proposed to assess the role of media such as facebook, television, radio and tweeter in the mitigation of the outbreak of COVID-19. The basic reproduction number R0 which is the threshold dynamics parameter between the disappearance and the persistence of the disease has been calculated. And, it is obvious to see that it varies directly to the number of hospitalized people, asymptomatic, symptomatic carriers and the impact of media coverage. The local and the global stabilities of the model have also been investigated by using the Routh-Hurwitz criterion and the Lyapunov's functional technique, respectively. Furthermore, we have performed a local sensitivity analysis to assess the impact of any variation in each one of the model parameter on the threshold R0 and the course of the disease accordingly. We have also computed the approximative rate at which herd immunity will occur when any control measure is implemented. To finish, we have presented some numerical simulation results by using some available data from the literature to corroborate our theoretical findings.
ABSTRACT
Virus neutralization at respiratory mucosal surfaces is important in the prevention of infection. Mucosal immunity is mediated mainly by extracellular secretory immunoglobulin A (sIgA) and its role has been well studied. However, the protective role of intracellular specific IgA (icIgA) is less well defined. Initially, in vitro studies using epithelial cell lines with surface expressed polymeric immunoglobulin receptor (pIgR) in transwell culture chambers have shown that icIgA can neutralize influenza, parainfluenza, HIV, rotavirus and measles viruses. This effect appears to involve an interaction between polymeric immunoglobulin A (pIgA) and viral particles within an intracellular compartment, since IgA is transported across the polarized cell. Co-localization of specific icIgA with influenza virus in patients' (virus culture positive) respiratory epithelial cells using well-characterized antisera was initially reported in 2018. This review provides a summary of in vitro studies with icIgA on colocalization and neutralization of the above five viruses. Two other highly significant respiratory infectious agents with severe global impacts viz. SARS-2 virus (CoViD pandemic) and the intracellular bacterium—Mycobacterium tuberculosis—are discussed. Further studies will provide more detailed understanding of the mechanisms and kinetics of icIgA neutralization in relation to viral entry and early replication steps with a specific focus on mucosal infections. This will inform the design of more effective vaccines against infectious agents transmitted via the mucosal route. © 2023 The Authors. Scandinavian Journal of Immunology published by John Wiley & Sons Ltd on behalf of The Scandinavian Foundation for Immunology.
ABSTRACT
In November 2020, the Armed Forces of the Russian Federation began mass immunisation of the personnel with Gam-COVID-Vac (Sputnik V), the first Russia vaccine against the new coronavirus infection (COVID-19). Thus, it became necessary to assess post-vaccination antibody levels and the duration and intensity of humoral immunity to COVID-19. The aim of the study was to investigate the immunogenicity and efficacy of Gam-COVID-Vac in military medical staff after vaccination. Materials and methods: the authors determined the presence of specific antibodies in the serum of individuals immunised with Gam-COVID-Vac (477 volunteers) and COVID-19 convalescents (73 patients), using virus neutralisation (VN), enzyme-linked immunosorbent assay (ELISA) with reagent kits by several manufacturers, and immunoblotting. The results of the study were evaluated using analysis of variance. Results: VN detected virus neutralising antibodies in 90.7% of vaccinated subjects;ELISA, in 95.4%. Both VN and ELISA showed lower antibody levels in the vaccinated over 50 years of age. ELISA demonstrated a significantly higher concentration of anti-SARS-CoV-2 spike IgG in the Gam-COVID-Vac group than in the COVID-19 convalescent group. The correlation between antibody detection results by VN and ELISA was the strongest when the authors used their experimental reagent kit for quantitative detection of virus neutralising antibodies by competitive ELISA with the recombinant human ACE2 receptor. Having analysed the time course of neutralising antibody titres, the authors noted a significant, more than two-fold decrease in geometric means of the titres three months after administration of the second vaccine component. Conclusions: the subjects vaccinated with Gam-COVID-Vac gain effective humoral immunity to COVID-19. The decrease in titres indicates the need for revaccination in 6 months.
ABSTRACT
Objectives: The CoV2-001 phase I randomized trial evaluated the safety and immunogenicity of the GLS-5310 bi-cistronic DNA vaccine through 48 weeks of follow-up. Design: A total of 45 vaccine-naïve participants were recruited between December 31, 2020, and March 30, 2021. GLS-5310, encoding for the SARS-CoV-2 spike and open reading frame 3a (ORF3a) proteins, was administered intradermally at 0.6 mg or 1.2 mg per dose, followed by application of the GeneDerm suction device as part of a two-dose regimen spaced either 8 or 12 weeks between vaccinations. Results: GLS-5310 was well tolerated with no serious adverse events reported. Antibody and T cell responses were dose-independent. Anti-spike antibodies were induced in 95.5% of participants with an average geometric mean titer of ∼480 four weeks after vaccination and declined minimally through 48 weeks. Neutralizing antibodies were induced in 55.5% of participants with post-vaccination geometric mean titer of 28.4. T cell responses were induced in 97.8% of participants, averaging 716 site forming units/106 cells four weeks after vaccination, increasing to 1248 at week 24, and remaining greater than 1000 through 48 weeks. Conclusion: GLS-5310 administered with the GeneDerm suction device was well tolerated and induced high levels of binding antibodies and T-cell responses. Antibody responses were similar to other DNA vaccines, whereas T cell responses were many-fold greater than DNA and non-DNA vaccines. © 2023 The Authors
ABSTRACT
The post-COVID-19 recovery period is characterized by persistence of some symptoms, with immunological alterations being of great importance. Development of preventive measures to normalize mucosal immunity after a coronavirus infection determines the relevance of the current study. The aim was to study dynamics of clinical symptoms and level of secretory immunoglobulin A in individuals after a novel coronavirus infection as well as evaluate effectiveness of using IFNα-2b. Materials and methods. A study was conducted with patients aged 18 to 60 years old (n = 130), surveyed 1 to 9 months after post-infection, as well as in apparently healthy individuals lacking COVID-19 (n = 15). Previous novel coronavirus infection and post-COVID manifestations were verified based on medical documentation, complaints, anamnesis data, physical examination and questionnaires. The concentration of salivatory and nasopharyngeal mucosal sIgA was measured dynamically prior to and after administration of local therapy with IFNα-2b (gel applied intranasally twice a day for 30 days). Results. The acute period of COVID-19 was characterized by fever, anosmia, severe asthenia (fatigue and weakness), muscle and joint pain. Among the post-COVID manifestations at early period (1–3 months), pain in the joints and muscles (75.0%) as well as elevated body temperature (21.2%) were reliably detected, whereas in the long period (6–9 months) there were revealed dominance with the same frequency of shortness of breath, muscle and joint pain (75.8%, respectively). Based on examination data in healthy subjects, there was determined an arbitrary normal range of secretory IgA in saliva — 6.45±1.81 mg/ml and nasal swabs — 13.43±3.24 mg/ml. In the group of patients 1–3 months post-infection, therapy with IFNα-2b one month later resulted in significantly increased level of secretory IgA in saliva (from 1.84±0.28 to 5.78±1.96 mg/ml) and in nasal swabs (from 28.61±3.0 to 39.83±3.85 mg/ml) by more than 3- and 1.5-fold, respectively. In the group of patients without therapy was featured with stably sustained decline in sIgA level up to 9 months after COVID-19. In particular, the level of saliva sIgA ranged from 2.36±0.56 down to 2.16±0.66 mg/ml, and in nasal smears — from 15.66±1.32 to 10.23±1.07 mg/ml that differed insignificantly compared to baseline level. The rate of respiratory diseases prevailed in this group (27.6% of cases), which fully lacked in the group of topically administered IFNα-2b. Conclusion. In the post-COVID period, multiple organ disorders persist and reduced sIgA level is registered. Intranasally applied IFNα-2b made possible to normalize sIgA level and prevent accumulation of respiratory infectious pathologies.
ABSTRACT
Background/Objectives: People with obesity (PWO) face an increased risk of severe outcomes from COVID-19, including hospitalisation, ICU admission and death. Obesity has been seen to impair immune memory following vaccination against influenza, hepatitis B, tetanus, and rabies. Little is known regarding immune memory in PWO following COVID-19 adenovirus vector vaccination. Subjects/Methods: We investigated SARS-CoV-2 specific T cell responses in 50 subjects, five months following a two-dose primary course of ChAdOx1 nCoV-19 (AZD1222) vaccination. We further divided our cohort into PWO (n = 30) and matched controls (n = 20). T cell (CD4+, CD8+) cytokine responses (IFNγ, TNFα) to SARS-CoV-2 spike peptide pools were determined using multicolour flow cytometry. Results: Circulating T cells specific for SARS-CoV-2 were readily detected across our cohort, with robust responses to spike peptide stimulation across both T cell lines. PWO and controls had comparable levels of both CD4+ and CD8+ SARS-CoV-2 spike specific T cells. Polyfunctional T cells – associated with enhanced protection against viral infection – were detected at similar frequencies in both PWO and controls. Conclusions: These data indicate that PWO who have completed a primary course of ChAdOx1 COVID-19 vaccination have robust, durable, and functional antigen specific T cell immunity that is comparable to that seen in people without obesity. © 2022, The Author(s), under exclusive licence to Springer Nature Limited.
ABSTRACT
INTRODUCTION:Children with inflammatory bowel disease (IBD) may respond differently to COVID-19 immunization as compared with healthy children or adults with IBD. Those younger than 12 years receive a lower vaccine dose than adults. We sought to describe the safety and humoral immune response to COVID-19 vaccine in children with IBD.METHODS:We recruited children with IBD, ages 5-17 years, who received ≥ 2 doses of the BNT162b2 vaccine by a direct-to-patient outreach and at select sites. Patient demographics, IBD characteristics, medication use, and vaccine adverse events were collected. A subset of participants had quantitative measurement of anti-receptor binding domain IgG antibodies after 2-part immunization.RESULTS:Our study population included 280 participants. Only 1 participant required an ED visit or hospitalization because of an adverse event. Of 99 participants who underwent anti-receptor binding domain IgG antibody measurement, 98 had a detectable antibody, with a mean antibody level of 43.0 g/mL (SD 67) and a median of 22 g/mL (interquartile range 12-38). In adjusted analyses, older age (P = 0.028) and antitumor necrosis factor monotherapy compared with immunomodulators alone (P = 0.005) were associated with a decreased antibody level. Antibody response in patients treated with antitumor necrosis factor combination vs monotherapy was numerically lower but not significant.DISCUSSION:Humoral immune response to COVID-19 immunization in children with IBD was robust, despite a high proportion of this pediatric cohort being treated with immunosuppressive agents. Severe vaccine-related AEs were rare. Overall, these findings provide a high level of reassurance that pediatric patients with IBD respond well and safely to SARS-CoV-2 vaccination. © 2023 Wolters Kluwer Health. All rights reserved.
ABSTRACT
Objectives: To report the safety and immunogenicity profile of a protein subunit vaccine (CovovaxTM) given as a third (booster) dose to individuals primed with different primary vaccine regimens. Methods: A third dose was administered to individuals with an interval range of 3-10 months after the second dose. The four groups were classified according to their primary vaccine regimens, including two-dose BBIBP-CorV, AZD1222, BNT162b2, and CoronaVac/AZD1222. Immunogenicity analysis was performed to determine binding antibodies, neutralizing activity, and the T-cell responses. Results: Overall, 210 individuals were enrolled and boosted with the CovovaxTM vaccine. The reactogenicity was mild to moderate. Most participants elicited a high level of binding and neutralizing antibody against Wild-type and Omicron variants after the booster dose. In participants who were antinucleocapsid immunoglobulin G-negative from all groups, a booster dose could elicit neutralizing activity to Wild-type and Omicron variants by more than 95% and 70% inhibition at 28 days, respectively. The CovovaxTM vaccine could elicit a cell-mediated immune response. Conclusion: The protein subunit vaccine (CovovaxTM) can be proposed as a booster dose after two different priming dose regimens. It has strong immunogenicity and good safety profiles. © 2022 The Author(s)