Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
1.
The Pan African medical journal ; 41:148, 2022.
Article in English | MEDLINE | ID: covidwho-1835836

ABSTRACT

The reduction in the severity and prevalence of COVID-19 has been largely due to the rapid development and deployment of COVID-19 vaccines. Consequently, WHO, in partnership with the Coalition for Epidemic Preparedness Innovation, GAVI, the Vaccine Alliance, set up the COVID-19 Vaccines Global Access (COVAX) Initiative. The goal of this initiative is to prevent discrimination between high and low-income/middle-income countries and ensure equitable vaccine distribution. The first COVID-19 vaccine sent to most countries in the region through the COVAX initiative was the Oxford AstraZeneca (ChAdOx1 nCoV-19) vaccine. Due to the reduced protection against variants of concern, safety issues, and supply challenges of the AstraZeneca vaccine in some countries, heterologous booster dose with alternative vaccines for individuals who have received a prime dose of AstraZeneca. Moreover, vaccine mixing (heterologous vaccination) due to its superior immunogenicity and enhanced protection is being recommended even for individuals who are yet to be vaccinated. However, it is important that prior adoption, empirical data on immunogenicity, safety, and reactogenicity be locally generated in populations where such heterologous vaccine is to be implemented. Regrettably, such data from our search in all clinical trial databases is not ongoing in Africa as at the time of writing this manuscript. Therefore, this treatise advocates an experimental arm to generate such robust evidence. This will provide empirical evidence to guide this innovative approach aimed at ensuring equity and access to COVID-19 vaccines in LMICs, particularly countries within the African region.

2.
Journal of Cellular and Molecular Medicine (Online) ; 26(9):2483-2504, 2022.
Article in English | ProQuest Central | ID: covidwho-1832115

ABSTRACT

As the number of confirmed cases and resulting death toll of the COVID‐19 pandemic continue to increase around the globe ‐ especially with the emergence of new mutations of the SARS‐CoV‐2 virus in addition to the known alpha, beta, gamma, delta and omicron variants ‐ tremendous efforts continue to be dedicated to the development of interventive therapeutics to mitigate infective symptoms or post‐viral sequelae in individuals for which vaccines are not accessible, viable or effective in the prevention of illness. Many of these investigations aim to target the associated acute respiratory distress syndrome, or ARDS, which induces damage to lung epithelia and other physiologic systems and is associated with progression in severe cases. Recently, stem cell‐based therapies have demonstrated preliminary efficacy against ARDS based on a number of preclinical and preliminary human safety studies, and based on promising outcomes are now being evaluated in phase II clinical trials for ARDS. A number of candidate stem cell therapies have been found to exhibit low immunogenicity, coupled with inherent tropism to injury sites. In recent studies, these have demonstrated the ability to modulate suppression of pro‐inflammatory cytokine signals such as those characterizing COVID‐19‐associated ARDS. Present translational studies are aiming to optimize the safety, efficacy and delivery to fully validate stem cell‐based strategies targeting COVID‐19 associated ARDS for viable clinical application.

3.
Embase; 2021.
Preprint in English | EMBASE | ID: ppcovidwho-334741

ABSTRACT

We assessed if immune responses are enhanced in CD-1 mice by heterologous vaccination with two different nucleic acid-based COVID-19 vaccines: a next-generation human adenovirus serotype 5 (hAd5)-vectored dual-antigen spike (S) and nucleocapsid (N) vaccine (AdS+N) and a self-amplifying and -adjuvanted S RNA vaccine (SASA S) delivered by a nano-lipid carrier. The AdS+N vaccine encodes S modified with a fusion motif to increase cell-surface expression. The N antigen is modified with an Enhanced T-cell Stimulation Domain (N-ETSD) to direct N to the endosomal/lysosomal compartment and increase MHC class I and II stimulation potential. The S sequence in the SASA S vaccine comprises the D614G mutation, two prolines to stabilize S in the prefusion conformation, and 3 glutamines in the furin cleavage region to increase cross-reactivity across variants. CD-1 mice received vaccination by homologous and heterologous prime > boost combinations. Humoral responses to S were the highest with any regimen including the SASA S vaccine, and IgG bound to wild type and Delta (B.1.617.2) variant S1 at similar levels. An AdS+N boost of an SASA S prime particularly enhanced both CD4+ and CD8+ T-cell responses to both wild type and Delta S peptides relative to all other vaccine regimens. Sera from mice receiving SASA S homologous or heterologous vaccination were found to be highly neutralizing of all pseudovirus strains tested: Wuhan, Beta, Delta, and Omicron strain. The findings here support the clinical testing of heterologous vaccination by an SASA S > AdS+N regimen to provide increased protection against emerging SARS-CoV-2 variants.

4.
EClinicalMedicine ; 45(21), 2022.
Article in English | CAB Abstracts | ID: covidwho-1828408

ABSTRACT

Background: Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based recombinant Newcastle disease virus vaccine expressing the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It's being developed by public sector manufacturers in Thailand, Vietnam, and Brazil;herein are initial results from Thailand.

5.
Vaccines ; 10(4), 2022.
Article in English | EMBASE | ID: covidwho-1822473

ABSTRACT

In response to the SARS-CoV-2 Delta variant, which partially escaped the vaccine-induced immunity provided by two doses of vaccination with CoronaVac (Sinovac), the National Vaccine Committee recommended the heterologous CoronaVac-ChAdOx1 (Oxford–AstraZeneca), a prime– boost vaccine regimen. This pilot study aimed to describe the immunogenicity and adverse events of the heterologous CoronaVac-ChAdOx1 regimen, in comparison with homologous CoronaVac, and homologous ChAdOx1. Between May and August 2021, we recruited a total of 354 participants from four vaccination groups: the CoronaVac-ChAdOx1 vaccinee (n = 155), the homologous CoronaVac vaccinee (n = 32), the homologous ChAdOx1 vaccinee (n = 47), and control group of COVID-19 patients (n = 120). Immunogenicity was evaluated by measuring the level of IgG antibodies against the receptor-binding domain (anti-SRBD) of the SARS-CoV-2 spike protein S1 subunit and the level of neutralizing antibodies (NAbs) against variants of concern (VOCs) using the plaque reduction neutralization test (PRNT) and pseudovirus neutralization test (pVNT). The safety profile was recorded by interviewing at the 1-month visit after vaccination. The anti-SRBD level after the second booster dose of the CoronaVac-ChAdOx1 group at 2 weeks was higher than 4 weeks. At 4 weeks after the second booster dose, the anti-SRBD level in the CoronaVac-ChAdOx1 group was significantly higher than ei-ther homologous CoronaVac, the homologous ChAdOx1 group, and Control group (p < 0.001). In the CoronaVac-ChAdOx1 group, the PRNT50 level against the wild-type (434.5 BAU/mL) was the high-est;followed by Alpha variant (80.4), Delta variant (67.4), and Beta variant (19.8). The PVNT50 level was also found to be at its highest against the wild-type (432.1);followed by Delta variants (178.3), Alpha variants (163.9), and Beta variant (42.2), respectively. The AEs in the CoronaVac-ChAdOx1 group were well tolerated and generally unremarkable. The CoronaVac-ChAdOx1 heterologous regimen induced higher immunogenicity and a tolerable safety profile. In a situation when only CoronaVac-ChAdOx1 vaccines are available, they should be considered for use in responding to the Delta variant.

6.
Vaccines ; 10(4), 2022.
Article in English | EMBASE | ID: covidwho-1822466

ABSTRACT

The COVID-19 pandemic continues to be a worldwide health issue. Among hemodialysis (HD) patients, two-dose immunization schemes with mRNA vaccines have contributed to preventing severe COVID-19 cases;however, some have not produced a sufficient humoral response, and most have developed a rapid decline in antibody levels over the months following vaccination. This observational, prospective, multi-center study evaluated the humoral response in terms of presence and levels of IgG antibodies to the receptor-binding domain of the S1 spike antigen of SARS-CoV-2 (anti-S1-RBD IgG) to the third dose of SARS-CoV-2 mRNA vaccines, either the mRNA-1273 (Moderna) or BNT162b2 (Pfizer), in 153 patients from three dialysis units affiliated to Hospital Clínic of Barcelona (Spain). Most hemodialysis patients responded intensely to this third vaccine dose, achieving the seroconversion in three out of four non-or weak responders to two doses. Moreover, 96.1% maintained the upper limit or generated higher titers than after the second. BNT162b2 vaccine, active cancer, and immunosuppressive treatment were related to a worse humoral response. Every hemodialysis patient should be administered a third vaccine dose six months after receiving the second one. Despite the lack of data, immunosuppressed patients and those with active cancer may benefit from more frequent vaccine boosters.

7.
Vaccines ; 10(4), 2022.
Article in English | EMBASE | ID: covidwho-1822460

ABSTRACT

The worldwide pandemic of coronavirus disease 2019 (COVID-19) has imposed a challenge on human health worldwide, and vaccination represents a vital strategy to control the pandemic. To date, multiple COVID-19 vaccines have been granted emergency use authorization, including inactivated vaccines, adenovirus-vectored vaccines, and nucleic acid vaccines. These vaccines have different technical principles, which will necessarily lead to differences in safety and efficacy. Therefore, we aim to implement a systematic review by synthesizing clinical experimental data combined with mass vaccination data and conducting a synthesis to evaluate the safety and efficacy of COVID-19 vaccines. Compared with other vaccines, adverse reactions after vaccination with inactivated vaccines are relatively low. The efficacy of inactivated vaccines is approximately 60%, adenovirus-vectored vaccines are 65%, and mRNA vaccines are 90%, which are always efficient against asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, symptomatic COVID-19, COVID-19 hospitalization, severe or critical hospitalization, and death. RNA-based vaccines have a number of advantages and are one of the most promising vaccines identified to date and are particularly important during a pandemic. However, further improvements are required. In time, all the antibody levels weaken gradually, so a booster dose is needed to maintain immunity. Compared with homologous prime-boost immunization, heterologous prime-boost immunization prompts more robust humoral and cellular immune responses.

8.
Vaccines ; 10(4), 2022.
Article in English | EMBASE | ID: covidwho-1822459

ABSTRACT

Obesity is a significant factor for increased morbidity and mortality upon infection with SARS-CoV-2. Because of the higher potential for negative outcomes following infection of individuals with obesity, the impact of body mass index (BMI) on vaccine immunogenicity and efficacy is an important public health concern. Few studies have measured the magnitude and durability of the vaccine-specific response in relation to BMI. We measured the receptor binding domain (RBD)-specific serum IgG and surrogate neutralizing titers in a cohort of 126 vaccinated individuals with no clinical history or serological evidence of previous SARS-CoV-2 infection 50 and 200 days following vaccination. BMI had no significant impact on RBD-specific IgG titers and surrogate neutralizing titers 50 days following immunization, and leptin levels had no correlation with the response to immunization. Two hundred days following immunization, antibody titers in all groups had declined by approximately 90%. The responses were also similar between male and female participants and did not significantly vary across age groups. These results indicate that the magnitude and durability of the antibody response to mRNA-based vaccines are unaffected by BMI in this cohort.

9.
Vaccines ; 10(4), 2022.
Article in English | EMBASE | ID: covidwho-1822458

ABSTRACT

The presence of neutralizing antibodies (NAbs) against SARS-CoV-2 represent a surrogate marker of immunologic protection in populations at high risk of infection such as healthcare workers caring for hospitalized patients with COVID-19. As recommended by CDC and the European CDC, the use of rapid diagnostic tests during population-based evaluations offers an opportunity to identify individuals with serologic evidence of natural infection or who have undergone vaccination. We carried out a cross-sectional study to assess the presence of neutralizing antibodies against SARS-CoV-2 among medical providers at an intensive care unit of a large referral hospital in Alicante, Spain. In addition, we tested for the presence of neutralizing antibodies compared to serum of uninfected individuals from a Biobank. We were also interested in evaluating the use of a rapid lateral flow immunochromatography (LFIC) test against a surrogate ELISA viral neutralization test (sVNT). This rapid test demonstrated a specificity of 1.000 95% CI (0.91–1.00) and the sensitivity of 0.987 95% CI (0.93–1.00). The negative predictive value was 95%. After six months, this rapid test demonstrated that those immunized with two doses of BioNTech/Pfizer vaccine, maintained optimal levels of neutralizing antibodies. We concluded that all Health Care Workers develop NAbs and the use of this rapid immunochromatographic test represents a potential tool to be used in population-based studies to detect serological antibody responses to vaccination. Vaccination policies could benefit from this tool to assess additional doses of vaccine or boosters among high-risk populations.

10.
Vaccines ; 10(4), 2022.
Article in English | EMBASE | ID: covidwho-1822456

ABSTRACT

A third dose of CVnCoV, a former candidate mRNA vaccine against SARS-CoV-2, was previously shown to boost neutralizing antibody responses against SARS-CoV-2 wild-type in adults aged 18–60 and >60 years in a phase 2a clinical study. In the present study, we report the neutralizing antibody responses to a wild-type and a variant of concern, Delta, after a third dose of the vaccine on day (D)57 and D180. Neutralization activity was assessed using a microneutralization assay. Comparable levels of neutralizing antibodies against the wild-type and Delta were induced. These were higher than those observed after the first two doses, irrespective of age or pre-SARS-CoV-2-exposure status, indicating that the first two doses induced immune memory. Four weeks after the third dose on D180, the neutralizing titers for wild-type and Delta were two-fold higher in younger participants than in older participants;seroconversion rates were 100% for wild-type and Delta in the younger group and for Delta in the older group. A third CVnCoV dose induced similar levels of neutralizing responses against wild-type virus and the Delta variant in both naïve and pre-exposed participants, aligning with current knowledge from licensed COVID-19 vaccines that a third dose is beneficial against SARS-CoV-2 variants.

11.
Viruses ; 14(5), 2022.
Article in English | EMBASE | ID: covidwho-1822443

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially emerging variants, poses an increased threat to global public health. The significant reduction in neutralization activity against the variants such as B.1.351 in the serum of convalescent patients and vaccinated people calls for the design of new potent vaccines targeting the emerging variant. However, since most vaccines approved and in clinical trials are based on the sequence of the original SARS-CoV-2 strain, the immunogenicity and protective efficacy of vaccines based on the B.1.351 variant remain largely unknown. In this study, we evaluated the immunogenicity, induced neutralization activity, and protective efficacy of wild-type spike protein nanoparticle (S-2P) and mutant spike protein nanoparticle (S-4M-2P) carrying characteristic mutations of B.1.351 variant in mice. Although there was no significant difference in the induction of spike-specific IgG responses in S-2P-and S-4M-2P-immunized mice, neutralizing antibodies elicited by S-4M-2P exhibited noteworthy, narrower breadth of reactivity with SARS-CoV-2 variants compared with neutralizing antibodies elicited by S-2P. Furthermore, the decrease of induced neutralizing antibody breadth at least partly resulted from the amino acid substitution at position 484. Moreover, S-4M-2P vaccination conferred insufficient protection against live SARS-CoV-2 virus infection, while S-2P vaccination gave definite protection against SARS-CoV-2 challenge in mice. Together, our study provides direct evidence that the E484K substitution in a SARS-CoV-2 subunit protein vaccine limited the cross-reactive neutralizing antibody breadth in mice and, more importantly, draws attention to the unfavorable impact of this mutation in spike protein of SARS-CoV-2 variants on the induction of potent neutralizing antibody responses.

12.
Frontiers in Endocrinology ; 13, 2022.
Article in English | EMBASE | ID: covidwho-1822360

ABSTRACT

Aim: To determine the efficacy and safety of inactivated SARS-CoV-2 vaccine (BBIBP-CorV) in patients with breast cancer. Methods: In this multi- institutional cohort study, a total of 160 breast cancer patients (mean age of 50.01 ± 11.5 years old) were assessed for the SARS-CoV-2 Anti-Spike IgG and SARS-CoV2 Anti RBD IgG by ELISA after two doses of 0.5 mL inactivated, COVID-19 vaccine (BBIBP-CorV). All patients were followed up for three months for clinical COVID-19 infection based on either PCR results or imaging findings. Common Terminology Criteria for Adverse Events were used to assess the side effects. Results: The presence of SARS-CoV-2 anti-spike IgG, SARS-CoV2 anti-RBD IgG, or either of these antibodies was 85.7%, 87.4%, and 93.3%. The prevalence of COVID-19 infection after vaccination was 0.7%, 0% and 0% for the first, second and third months of the follow-up period. The most common local and systemic side-effects were injection site pain and fever which were presented in 22.3% and 24.3% of patients, respectively. Discussion: The inactivated SARS-CoV-2 vaccine (BBIBP-CorV) is a tolerable and effective method to prevent COVID-19.

13.
Egyptian Journal of Medical Human Genetics ; 23(1), 2022.
Article in English | EMBASE | ID: covidwho-1822226

ABSTRACT

Background: As the new pandemic created by COVID-19 virus created the need of rapid acquisition of a suitable vaccine against SARS-CoV-2 to develop Immunity and to reduce the mortality, the aim of this study was to identify SARS-CoV-2 S protein and N antigenic epitopes by using immunoinformatic methods to design a vaccine against SARS-CoV-2, for which S and N protein-dependent epitopes are predicted. B cell, CTL and HTL were determined based on antigenicity, allergenicity and toxicity that were non-allergenic, non-toxic, and antigenic and were selected for the design of a multi-epitope vaccine structure. Then, in order to increase the safety of Hbd-3 and Hbd-2 as adjuvants, they were connected to the N and C terminals of the vaccine construct, respectively, with a linker. The three-dimensional structure of the structure was predicted and optimized, and its quality was evaluated. The vaccine construct was ligated to MHCI. Finally, after optimizing the codon to increase expression in E. coli K12, the vaccine construct was cloned into pET28a (+) vector. Results: Epitopes which were used in our survey were based on non-allergenic, non-toxic and antigenic. Therefore, 543-amino-acid-long multi-epitope vaccine formation was invented through linking 9 cytotoxic CTL, 5 HTL and 14 B cell epitopes with appropriate adjuvants and connectors that can control the SARS coronavirus 2 infection and could be more assessed in medical scientific researches. Conclusion: We believe that the proposed multi-epitope vaccine can effectively evoke an immune response toward SARS-CoV-2.

14.
International Journal of Physiology, Pathophysiology and Pharmacology ; 14(1):1-3, 2022.
Article in English | EMBASE | ID: covidwho-1820649

ABSTRACT

COVID-19 vaccination is proven useful for primary prevention against COVID-19. Classically, two doses of vaccine are required. After complete vaccination, there might be a decline in immunity level. When there is a new emerging variant and a possible decline of immunity in general people after standard mass vaccination, many sci-entists propose ideas for the additional third dose vaccination. The effectiveness of the third vaccine still unknown, therefore any studies on its effectiveness are interesting. Additionally, there are also many new ideas for using a new type of COVID-19 crossing to the previous completely vaccinated one. In this study, the authors use a clinical model technique for estimating of response to the additional third dose of COVID-19 vaccine based on different complete standard vaccination background.

15.
Trends in Molecular Medicine ; 2022.
Article in English | ScienceDirect | ID: covidwho-1819576

ABSTRACT

Coronavirus disease 2019 (COVID-19) which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been associated with severe illness in pregnant women. Furthermore, COVID-19 during pregnancy is associated with adverse foetal outcomes, including preterm labour. Pregnant women were largely excluded from initial clinical trials on the safety and efficacy of COVID-19 vaccines;however, they have since been included as part of the routine roll out of these vaccines. This narrative review, synthesis the evidence on the safety, immunogenicity, and effectiveness of mainly the messenger ribonucleic acid (mRNA) COVID-19 vaccines, which have been most widely used in pregnant women.

16.
Journal of Microbiology, Immunology and Infection ; 2022.
Article in English | ScienceDirect | ID: covidwho-1819544

ABSTRACT

COVID-19 vaccination is recommended for at-risk populations, but the vaccine effectiveness in people living with HIV (PLWH) remains incompletely understood. Here we demonstrate that COVID-19 vaccination was clinically effective among PLWH during the outbreak setting with a low endemicity of COVID-19 where non-pharmaceutical interventions were strictly implemented.

17.
Reviews in Medical Virology ; n/a(n/a):e2359, 2022.
Article in English | Wiley | ID: covidwho-1819394

ABSTRACT

Designing and manufacturing efficient vaccines against coronavirus disease 2019 (COVID-19) is a major objective. In this systematic review, we aimed to evaluate the most important vaccines under construction worldwide, their efficiencies and clinical results in healthy individuals and in those with specific underlying diseases. We conducted a comprehensive search in PubMed, Scopus, EMBASE, and Web of Sciences by 1 December 2021 to identify published research studies. The inclusion criteria were publications that evaluated the immune responses and safety of COVID-19 vaccines in healthy individuals and in those with pre-existing diseases. We also searched the VAERS database to estimate the incidence of adverse events of special interest (AESI) post COVID-19 vaccination. Almost all investigated vaccines were well tolerated and developed good levels of both humoural and cellular responses. A protective and efficient humoural immune response develops after the second or third dose of vaccine and a longer interval (about 28 days) between the first and second injections of vaccine could induce higher antibody responses. The vaccines were less immunogenic in immunocompromised patients, particularly those with haematological malignancies. In addition, we found that venous and arterial thrombotic events, Bell's palsy, and myocarditis/pericarditis were the most common AESI. The results showed the potency of the SARS-CoV-2 vaccines to protect subjects against disease. The provision of further effective and safe vaccines is necessary in order to reach a high coverage of immunisation programs across the globe and to provide protection against infection itself.

18.
The New England Journal of Medicine ; 386(17):1615-1626, 2022.
Article in English | ProQuest Central | ID: covidwho-1815678

ABSTRACT

BackgroundRespiratory syncytial virus (RSV), a major cause of illness and death in infants worldwide, could be prevented by vaccination during pregnancy. The efficacy, immunogenicity, and safety of a bivalent RSV prefusion F protein–based (RSVpreF) vaccine in pregnant women and their infants are uncertain.MethodsIn a phase 2b trial, we randomly assigned pregnant women, at 24 through 36 weeks’ gestation, to receive either 120 or 240 μg of RSVpreF vaccine (with or without aluminum hydroxide) or placebo. The trial included safety end points and immunogenicity end points that, in this interim analysis, included 50% titers of RSV A, B, and combined A/B neutralizing antibodies in maternal serum at delivery and in umbilical-cord blood, as well as maternal-to-infant transplacental transfer ratios.ResultsThis planned interim analysis included 406 women and 403 infants;327 women (80.5%) received RSVpreF vaccine. Most postvaccination reactions were mild to moderate;the incidence of local reactions was higher among women who received RSVpreF vaccine containing aluminum hydroxide than among those who received RSVpreF vaccine without aluminum hydroxide. The incidences of adverse events in the women and infants were similar in the vaccine and placebo groups;the type and frequency of these events were consistent with the background incidences among pregnant women and infants. The geometric mean ratios of 50% neutralizing titers between the infants of vaccine recipients and those of placebo recipients ranged from 9.7 to 11.7 among those with RSV A neutralizing antibodies and from 13.6 to 16.8 among those with RSV B neutralizing antibodies. Transplacental neutralizing antibody transfer ratios ranged from 1.41 to 2.10 and were higher with nonaluminum formulations than with aluminum formulations. Across the range of assessed gestational ages, infants of women who were immunized had similar titers in umbilical-cord blood and similar transplacental transfer ratios.ConclusionsRSVpreF vaccine elicited neutralizing antibody responses with efficient transplacental transfer and without evident safety concerns. (Funded by Pfizer;ClinicalTrials.gov number, NCT04032093.)

19.
Lancet ; 399(10321):237-248, 2022.
Article in English | GIM | ID: covidwho-1815307

ABSTRACT

Background: The Ad5-nCoV vaccine is a single-dose adenovirus type 5 (Ad5) vectored vaccine expressing the SARS-CoV-2 spike protein that was well-tolerated and immunogenic in phase 1 and 2 studies. In this study, we report results on the final efficacy and interim safety analyses of the phase 3 trial.

20.
Vaccine ; 2022.
Article in English | ScienceDirect | ID: covidwho-1815245

ABSTRACT

Background We evaluated the safety and immunogenicity of NVX-CoV2373, a recombinant SARS-CoV-2 nanoparticle vaccine, in healthy Japanese participants. Methods This phase 1/2, randomized, observer-blind, placebo-controlled trial conducted in Japan (two sites), enrolled healthy Japanese adults aged ≥ 20 years with no history/risk of SARS-CoV-2 infection and no prior exposure to other approved/investigational SARS-CoV-2 vaccines or treatments. Participants were stratified by age (< 65 or ≥ 65 years) and randomized to receive two doses of either NVX-CoV2373 (5 μg SARS-CoV-2 rS;50 μg Matrix-M1) or placebo, 21 days apart. Primary outcomes were safety and immunogenicity assessed by serum IgG antibody levels against SARS-CoV-2 rS protein on day 36. Herein, we report the primary data analysis at 4 weeks after the second dose, ahead of 12-month follow-up completion (data cut-off: 8 May 2021). Results Between 12 February 2021 and 17 March 2021, 326 subjects were screened, and 200 participants enrolled and randomized: NVX-CoV2373, n = 150;placebo, n = 50. Solicited adverse events (AEs) through 7 days after each injection occurred in 121/150 (80.7%) and 11/50 (22.0%) participants in the NVX-CoV2373 and placebo arms, respectively. In the NVX-CoV2373 arm, tenderness and injection site pain were the most frequently reported solicited AEs after each vaccination, irrespective of age. Robust immune responses occurred with NVX-CoV2373 (n = 150) by day 36: IgG geometric mean fold rise (95% confidence interval) 259 (219, 306);seroconversion rate 100% (97.6, 100). No such response occurred with placebo (n = 49). Conclusion Two doses of NVX-CoV2373 given with a 21-day interval demonstrated acceptable safety and induced robust anti-SARS-CoV-2 immune responses in healthy Japanese adults. Funding: Takeda Pharmaceutical Company Limited and Japan Agency for Medical Research and Development (AMED). ClinicalTrials.gov identifier: NCT04712110.

SELECTION OF CITATIONS
SEARCH DETAIL