ABSTRACT
A hybrid convolutional neural network (CNN)-based model is proposed in the article for accurate detection of COVID-19, pneumonia, and normal patients using chest X-ray images. The input images are first pre-processed to tackle problems associated with the formation of the dataset from different sources, image quality issues, and imbalances in the dataset. The literature suggests that several abnormalities can be found with limited medical image datasets by using transfer learning. Hence, various pre-trained CNN models: VGG-19, InceptionV3, MobileNetV2, and DenseNet are adopted in the present work. Finally, with the help of these models, four hybrid models: VID (VGG-19, Inception, and DenseNet), VMI(VGG-19, MobileNet, and Inception), VMD (VGG-19, MobileNet, and DenseNet), and IMD(Inception, MobileNet, and DenseNet) are proposed. The model outcome is also tested using five-fold cross-validation. The best-performing hybrid model is the VMD model with an overall testing accuracy of 97.3%. Thus, a new hybrid model architecture is presented in the work that combines three individual base CNN models in a parallel configuration to counterbalance the shortcomings of individual models. The experimentation result reveals that the proposed hybrid model outperforms most of the previously suggested models. This model can also be used in the identification of diseases, especially in rural areas where limited laboratory facilities are available. © 2022 Wiley Periodicals LLC.
ABSTRACT
Purpose: COVID-19 is not going anywhere and is slowly becoming a part of our life. The World Health Organization declared it a pandemic in 2020, and it has affected all of us in many ways. Several deep learning techniques have been developed to detect COVID-19 from Chest X-Ray images. COVID-19 infection severity scoring can aid in establishing the optimum course of treatment and care for a positive patient, as all COVID-19 positive patients do not require special medical attention. Still, very few works are reported to estimate the severity of the disease from the Chest X-Ray images. The unavailability of the large-scale dataset might be a reason. Methods: We aim to propose CoVSeverity-Net, a deep learning-based architecture for predicting the severity of COVID-19 from Chest X-ray images. CoVSeverity-Net is trained on a public COVID-19 dataset, curated by experienced radiologists for severity estimation. For that, a large publicly available dataset is collected and divided into three levels of severity, namely Mild, Moderate, and Severe. Results: An accuracy of 85.71% is reported. Conducting 5-fold cross-validation, we have obtained an accuracy of 87.82 ± 6.25%. Similarly, conducting 10-fold cross-validation we obtained accuracy of 91.26 ± 3.42. The results were better when compared with other state-of-the-art architectures. Conclusion: We strongly believe that this study has a high chance of reducing the workload of overworked front-line radiologists, speeding up patient diagnosis and treatment, and easing pandemic control. Future work would be to train a novel deep learning-based architecture on a larger dataset for severity estimation. © 2023, The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering.
ABSTRACT
Coronavirus disease (COVID-19) is a newly discovered viral sickness that can be fatal. The majority of patients will experience mild to severe respiratory problems and will improve without need for special treatment. Persons over 65, and for those who are underlying medical disorders such cardiovascular disease, asthma, respiratory illness, and cancer, are more prone for developing severe symptoms. In these conditions, 3D volumetric imaging has proven to be a useful technique for COVID-19 patient diagnosis and prognosis. We present a new approach for detecting and classifying COVID-19 infection using 3D volumetric lung imaging in this work. For the detection and classification process, we have used 3D volumetric image processing and deep learning techniques, respectively. Early recognition and finding are basic elements to stop COVID-19 spreading. Various profound learning-based approaches had been proposed for COVID-19 separating CT examines as an instrument to computerize and assist with finding. These methods suffer with at least one of the faults listed below: (i) They treat each CT scan individually (ii) These methods are trained and tested on the same dataset. To address these two challenges, we present an accurate deep learning technique for COVID-19 screening using a democratic framework in this paper. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
ABSTRACT
This article describes strategies to adapt and ensure equivalency of content coverage for an existing protein assay laboratory practical for concurrent face-to-face and online deliveries during COVID-19 and beyond.
ABSTRACT
The Coronavirus disease (COVID-19) infection has become a pandemic, and this is the most critical problem that has occurred in Thailand and also expanded all over the world. As such, it is not astonishing to know that this virus has had a direct effect on hospitals with the delayed screening of patients because of the increasing number of daily cases and the shortage of medical personnel and restricted treatment space. Due to such restrictions, in this study, we used a clinical decision-making system with predictive algorithms. Predictive algorithms could potentially ease the strain on healthcare systems by identifying the diseases. Moreover, image classification is one interesting aspect of image processing. Convolutional neural network (CNN) is a widely used algorithm for image classification by separating the images of the COVID-19 disease, images with a lung infection, and normal images. To evaluate the predictive performance of our models, precision, F1-score, recall, receiver operating characteristic (ROC) curve (area under the ROC curve), and accuracy scores were used. It was observed that the predictive models trained on the laboratory findings could be used to predict the COVID-19 infection as well and could be helpful for medical experts to appropriately prioritize the resources. This could be employed to assist medical experts in validating their initial laboratory findings and could also be used for clinical prediction studies. © 2022 IEEE.
ABSTRACT
The Coronavirus (COVID-19) outbreak in December 2019 has drastically affected humans worldwide, creating a health crisis that has infected millions of lives and devastated the global economy. COVID-19 is ongoing, with the emergence of many new strains. Deep learning (DL) techniques have proven helpful in efficiently analysing and delineating infectious regions in radiological images. This survey paper draws a taxonomy of deep learning techniques for detecting COVID-19 infection in radiographic imaging modalities Chest X-Ray, and Computer Tomography. DL techniques are broadly categorised into classification, segmentation, and multi-stage approaches for COVID-19 diagnosis at the image and region-level analysis. These techniques are further classified as pre-trained and custom-made Convolutional Neural Network architectures. Furthermore, a discussion is drawn on radiographic datasets, evaluation metrics, and commercial platforms provided for detection. In the end, a brief look is paid to emerging ideas, gaps in existing research, and challenges in developing diagnostic techniques. This survey provides insight into the promising areas of research in DL and is likely to guide the research community on the upcoming development of deep learning techniques for COVID-19. This will pave the way to accelerate the research in designing customised DL-based diagnostic tools for effectively dealing with new variants of COVID-19 and emerging challenges. © 2023 Informa UK Limited, trading as Taylor & Francis Group.
ABSTRACT
With the development of ICT and its adoption in various domains, it gained remarkable intention in the healthcare sector which introduce the telemedicine term. The coronavirus pandemic has created several challenges for researchers to develop an accurate and fast detection system. In this paper, we present a new telemedicine application to predict Covid-19 using CNN and Fuzzy set techniques. The evaluation of the system indicates high performance with a 98% F1 score, 99% of recall, 98% for precision, and 97% of accuracy. © 2022 IEEE.
ABSTRACT
With the arrival of the most recent coronavirus pandemic, it was a must to find solutions to detect this dangerous virus. Analyzing X-ray images was among the exploited techniques to control this disease. However, the doctor's subjectivity in analyzing X-rays was the first obstacle in detecting this virus accurately. Applying new deep learning techniques to x-ray images can be a potential solution to reduce this subjectivity. This paper aims to conduct a comparative study between six different CNN architectures (VGG16, VGG19, Inception, Xception, DenseNet, and ChexNet) for COVID-19 detection from X-rays. The obtained results based on the transfer learning strategy confirm the efficiency of the VGG 16, where its achieved 98.69 % of accuracy on the COVID-19 Radiography Dataset. © 2022 IEEE.
ABSTRACT
Experiential learning is compromised in meeting the educational demands of our students during the challenging time of the COVID-19 pandemic. A more inclusive, flexible, and objective-oriented experiential learning environment is required. In this context, module-based experiential learning that is executable on a digital platform was designed. The learning module focused on protein biochemistry, contained a combination of asynchronous and synchronous activities categorized into 'Knowledge Hub' and 'Lab-based Movie', across 5 weeks. Digital and module-based experiential learning provides equitable, inclusive, and flexible access to students at remote locations. Furthermore, it is an objective-oriented and highly organized experiential learning framework that encourages students to engage and participate more in the learning process.
ABSTRACT
Understanding facial expressions is important for the interactions among humans as it conveys a lot about the person's identity and emotions. Research in human emotion recognition has become more popular nowadays due to the advances in the machine learning and deep learning techniques. However, the spread of COVID-19, and the need for wearing masks in the public has impacted the current emotion recognition models' performance. Therefore, improving the performance of these models requires datasets with masked faces. In this paper, we propose a model to generate realistic face masks using generative adversarial network models, in particular image inpainting. The MAFA dataset was used to train the generative image inpainting model. In addition, a face detection model was proposed to identify the mask area. The model was evaluated using the MAFA and CelebA datasets, and promising results were obtained. © 2022 IEEE.
ABSTRACT
Statistical modeling and forecasting of time-to-events data are crucial in every applied sector. For the modeling and forecasting of such data sets, several statistical methods have been introduced and implemented. This paper has two aims, i.e., (i) statistical modeling and (ii) forecasting. For modeling time-to-events data, we introduce a new statistical model by combining the flexible Weibull model with the Z-family approach. The new model is called the Z flexible Weibull extension (Z-FWE) model, where the characterizations of the Z-FWE model are obtained. The maximum likelihood estimators of the Z-FWE distribution are obtained. The evaluation of the estimators of the Z-FWE model is assessed in a simulation study. The Z-FWE distribution is applied to analyze the mortality rate of COVID-19 patients. Finally, for forecasting the COVID-19 data set, we use machine learning (ML) techniques i.e., artificial neural network (ANN) and group method of data handling (GMDH) with the autoregressive integrated moving average model (ARIMA). Based on our findings, it is observed that ML techniques are more robust in terms of forecasting than the ARIMA model.